[1] G. Caporossi, P. Hansen, D. Vukicevic, Comparing Zagreb indices of cyclicgraphs. MATCH Commun. Math. Comput. Chem. 63 (2010) 441–451.
[2] J. Devillers, A.T. Balaban, (eds.), Topological Indices and Related Descriptorsin QSAR and QSPR.
Gordon and Breach, Amsterdam, 1999.
[3] A. A. Dobrynin, A. A. Kochetova, Degre distance of a graph: a degree analogueof the Wiener
index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
[4] E. Estrada, L. Torres, L. Rodr´ıguez and I. Gutman, An atom-bond connectivity index: modelling
the enthalpy of formation of alkanes, Indian J. Chem. 37A, 849-855.
[5] G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput.
Chem. 65 (2011) 79-84 .
[6] I. Gutman, B. Furtula, (eds.), Novel Molecular Structure Descriptors Theoryand Applications, vol.
I-II. Univ. Kragujevac, 2010.
[7] R. B. King, Applications of graph theory and topology in inorganic cluster and coordination chemistry, CRC Press, Boca Raton, 1993.
[8] P. N. Kishori, T. K. Afework, S. Dickson, Harmonic temperature Index for Certain Nanostructures,
International Journal of Mathematics Trends and Technology 56 (3) (2018) 159-164.
[9] P. N. Kishori, S. Dickson, On Temperature Index of Certain Nanostructures(preprint).
[10] P. N. Kishori, S. Dickson, Geometric Arithmetic Temperature Index of Certain Nanostructures, J. glob. res. math. arch. 5(5) 2018.
[11] M. Randic, On Characterization of molecular branching, j. Am. Chem. Soc. 97 (1975) 6609-6615.
[12] S. Fajtlowicz, On Conjectures of Graffiti, Discrete Math. 72 (1988) 113-118
[13] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors,Wiley-VCH,Weinheim, 2000.