Atom bond connectivity temperature index of certain nanostructures

Document Type : Full Length Article

Authors

1 Department of Mathematics, Mangalore university, Mangalagangothri

2 Department of Mathematics, Mangalore University, Mangalagangothri

Abstract

In the study of QSPR/QSAR, topological indices such as Zagreb index, Randic index, atom-bond connectivity index are exploited to estimate the bioactivity of chemical compounds. Inspired by many degree based topological indices, we propose here a new topological index, called the Atom Bond Connectivity temperature index ABCT(G) of a molecular graph G, which shows good correlation with entropy, acentric factor, enthalpy of vaporization and standard enthalpy of vaporization of an octane isomers. In this paper we compute the Atom Bond Connectivity temperature index ABCT(G) of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of TUC_4 C_8 [p,q].

Graphical Abstract

Atom bond connectivity temperature index of certain nanostructures

Keywords


[1] G. Caporossi, P. Hansen, D. Vukicevic, Comparing Zagreb indices of cyclicgraphs. MATCH Commun. Math. Comput. Chem. 63 (2010) 441–451.
[2] J. Devillers, A.T. Balaban, (eds.), Topological Indices and Related Descriptorsin QSAR and QSPR.
Gordon and Breach, Amsterdam, 1999.
[3] A. A. Dobrynin, A. A. Kochetova, Degre distance of a graph: a degree analogueof the Wiener
index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
[4] E. Estrada, L. Torres, L. Rodr´ıguez and I. Gutman, An atom-bond connectivity index: modelling
the enthalpy of formation of alkanes, Indian J. Chem. 37A, 849-855.
[5] G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput.
Chem. 65 (2011) 79-84 .
[6] I. Gutman, B. Furtula, (eds.), Novel Molecular Structure Descriptors Theoryand Applications, vol.
I-II. Univ. Kragujevac, 2010.
[7] R. B. King, Applications of graph theory and topology in inorganic cluster and coordination chemistry, CRC Press, Boca Raton, 1993.
[8] P. N. Kishori, T. K. Afework, S. Dickson, Harmonic temperature Index for Certain Nanostructures,
International Journal of Mathematics Trends and Technology 56 (3) (2018) 159-164.
[9] P. N. Kishori, S. Dickson, On Temperature Index of Certain Nanostructures(preprint).
[10] P. N. Kishori, S. Dickson, Geometric Arithmetic Temperature Index of Certain Nanostructures, J. glob. res. math. arch. 5(5) 2018.
[11] M. Randic, On Characterization of molecular branching, j. Am. Chem. Soc. 97 (1975) 6609-6615.
[12] S. Fajtlowicz, On Conjectures of Graffiti, Discrete Math. 72 (1988) 113-118
[13] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors,Wiley-VCH,Weinheim, 2000.
Volume 7, Issue 4
December 2022
Pages 185-193
  • Receive Date: 24 October 2022
  • Revise Date: 07 November 2022
  • Accept Date: 17 November 2022
  • Publish Date: 01 December 2022