On certain degree-based topological indices of armchair polyhex nanotubes

Document Type : Full Length Article

Author

RANI CHANNAMMA University, BELAGAVI-591156

Abstract

Recently [18], Shigehalli and Kanabur have introduced two new topological indices namely, AG2
index and SK3 index. Hosamani [14], has studied a novel topological index, namely the Sanskruti
index S (G) of a molecular graph G. In this paper, formula for computing the armchair polyhex
nanotube TUAC6 [m, n] family is given.

Graphical Abstract

On certain degree-based topological indices of armchair polyhex nanotubes

Keywords


[1] A. Bahramia and J. Yazdani, Padmakar-Ivan Index of H-Phenylinic Nanotubes and Nanotore, Di-
gest Journal of Nanomaterials and Biostructures 3 (2008) 265-267.
[2] A. Iranmanesh and A. R. Ashrafi, Balaban index of an armchair polyhex TUC4C8(R) and
TUC4C8(S) nanotorus, Journal of Computational and Theoretical Nanoscience 4 (3) (2007) 514-
517.
[3] F. Harary, Graph theory, Addison-Wesely, Reading mass, 1969.
[4] H. Deng, The PI Index of TUAC6[2p, q], MATCH Communications in Mathematical and in Com-
puter Chemistry 55 (2006) 461-476.
[5] I. Gutman, Degree-based topological indices, Croat. Chem. Acta. 86 (2013) 251-361.
[6] I.Gutman and N. Trinajstic, Graph theory and molecular orbital. Total p-electron energy of alter-
nant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[7] M. Eliasi and B. Taeri, Distance in Armchair Polyhex Nanotubes, MATCH Communications in
Mathematical and in Computer Chemistry 62 (2009) 295-310.
[8] M. V. Diudea, I. Gutman and J. Lorentz, Molecular Topology, Nova, Huntington (2001).
[9] M. R. Farahani, On The Fourth Atom-Bond Connectivity Index Of Armchair Polyhex Nanotubes,
Proc. Rom. Acad. Series B. 15 (1) (2013) 3-6.
[10] M. R. Farahani, Some Connectivity Indices and Zagreb Index of Polyhex Nanotubes, Acta Chimica
Slovenica. 59 (4) (2012) 779-783.
[11] M. V. Diudea, M. Stefu, B. P0v and P. E. John, Armchair Polyhex Nanotubes, Croatica Chemica
Acta 77 (2004) 111-115.
[12] N.Trinajstic, Chemical Graph theory, CRC Press, Boca Raton, 1992.
[13] S. Yousefi and A. R. Ashrafi, Distance Matrix and Wiener Index of Armchair Polyhex Nanotubes,
Studia Univ. Babes-Bolyai. Chemia. 53 (4) (2008) 111-116.
[14] S. M. Hosamani, Computing Sanskrit index of certain nanostructures, J. Appl. Math. Comput.
(2016) 1-9.
24
J. Andres Montoya et al. / Journal of Mathematical Nanoscienese 8 (2018) 19–25
[15] S. M. Hosamani and I. Gutman, Zagreb indices of transformation graphs and total transformation
graphs, Appl. Math. Comput. 247 (2014) 1156-1160.
[16] V. S. Shigehalli and R. Kanabur, Computation of New Degree-Based Topological Indices of
Graphene, Journal of Mathematics (2016).
[17] V. S. Shigehalli and R. Kanabur, Computing Degree-Based Topological Indices of Polyhex Nan-
otubes, Journal of Mathematical Nanoscience 6 (1-2) (2016) 59- 68.
[18] V. S. Shegehalli and R. Kanabur, New Version of Degree-Based Topological Indices of Certain nan-
otube, Journal of Mathematical Nano science 6 (1-2) (2016) 29-39.
[19] V. S. Shegehalli and R. Kanabur, Arithmetic-Geometric indices of Path Graph, Journal of Computer
and Mathematical sciences 6 (1) (2015) 19-24.
Volume 7, Issue 3
June 2022
Pages 133-139
  • Receive Date: 28 August 2022
  • Revise Date: 08 September 2022
  • Accept Date: 22 September 2022
  • Publish Date: 01 October 2022