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Abstract. Recently [18], Shigehalli and Kanabur have introduced two new topological indices
namely, AG2 index and SK3 index. Hosamani [14], has studied a novel topological index, namely
the Sanskruti index S(G) of a molecular graph G. In this paper, formula for computing the armchair
polyhex nanotube TUAC6[m,n] family is given.
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1 Introduction

Let G be a simple connected graph in chemical graph theory. In mathematics chemistry,
a molecular graph is a simple graph such that its vertices correspond to the atoms and the
edges to the bonds. And also a connected graph is a graph such that there is a path between
all pairs of vertices. Note that hydrogen atoms are often omitted [3, 12].

Mathematical chemistry is a branch of theoretical chemistry for discussion and predic-
tion of the molecular structure using mathematical methods without necessarily referring to
quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which
applies graph theory to mathematical modelling of chemical phenomena [6, 8, 12]. This the-
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ory had an important effect on the development of the chemical sciences.

All molecular graphs considered in this paper are finite, connected, loopless, and without
multiple edges. Let G = (V, E) be a graph with n vertices and m edges. The degree of a
vertex u ∈ V(G) is denoted by du(G) and is the number of vertices that are adjacent to u. The
edge connecting the vertices u and v is denoted by uv [3]. Motivated by previous research
on armchair polyhex nanotubes. Here we computed the topological index value of armchair
polyhex nanotubes [2,4,7,9,10,11,13,16,17,18].

2 Computing the topological indices of certain nanotubes

The armchair polyhex nanotubes G = TUAC6(Fig. 1) suppose m and n denote the num-
ber of hexagons in the first row/column of the 2D-lattice of TUAC6[m,n] (Fig. 2), respec-
tively. Thus the number of vertices/atoms in this nanotube is equal to |V (TUAC6[m,n])| =
2m (n + 1), m,n ∈ E(G) and obviously the number of edges/bonds is |E (TUAC6[m,n])| =
3mn + 2m.

Figure 1. The 3D lattice of Armchair polyhex nanotubes TUAC6[m,n].

There are two partitions V2 = {v ∈ V(G)/dv = 2} and V3 = {v ∈ V(G)/dv = 3} of V(TUAC6

[m,n]), since the degree of an arbitrary vertex/atom of a molecular graph armchair polyhex
is equal to 2 or 3. Next, these partitions imply that E(TUAC6[m,n]) can be divided in three
partitions
E6 = {u,v ∈ V(TUAC6[m,n])|du = dv = 3},
E5 = {u,v ∈ V(TUAC6[m,n])|du = 3, and dv = 2}, and
E4 = {u,v ∈ V(TUAC6[m,n])|du = dv = 2}.

From Fig. 2, it is easy to see that the size of edge/bond partitions E4, E5 and E6 are equal
to are equal to m, 2m and 3mn − m, respectively. From Fig. 3, one can see that for every
atom/vertex v ∈ V2, Sv = 2 + 3 = 5, since for its adjacent vertices u, w; du = 2 and dw = 3
(u ∈ V2, w ∈ V3) and obviously Su = 5. Whereas Sw = 2 × 3 + 2, since for N(w) = {u1,u2,v},
the degree of vertices/atoms u1, u2 equal to three. Also, for all other vertices a (which belong
to V3), Sa = 3 × 3 = 9.
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Figure 2. The 2D lattice of Armchair polyhex nanotubes TUAC6[m,n].

Figure 3. The particular of 2D lattice of Armchair polyhex TUAC6[m,n].

2.1 Arithmetic-Geometric (AG2) Index

Let G = (V, E) be a molecular graph, and SG(u) is the degree of the vertex u, then
AG2 index of G is defined as

AG2(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2
√

SG(u).SG(v)
,

where SG(u) (or SG(v)) is the summation of degrees of all neighbours of vertex u (or v) in G.

SG(u) = ∑
u,v∈E(G)

dG(u),

and
NG(u) = {v ∈ V(G)|uv ∈ E(G)} .

2.2 SK3 Index

The SK3 index of a graph G = (V, E) is defined as

SK3(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2

,

where SG(u) (or SG(v)) is the summation of degrees of all neighbours of vertex u (or v) in G.

SG(u) = ∑
u,v∈E(G)

dG(u),
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and

NG(u) = {v ∈ V(G)|uv ∈ E(G)} .

2.3 Sanskruti Index

Recently, Hosamani [18], studied a novel topological index, namely the Sanskruti index
S(G) of a molecular graph G.

S(G) = ∑
uv∈E(G)

(
SG(u)SG(v)

SG(u) + SG(v)− 2

)3

,

where SG(u) (or SG(v)) is the summation of degrees of all neighbours of vertex u (or v) in G.

SG(u) = ∑
u,v∈E(G)

dG(u),

and

NG(u) = {v ∈ V(G)|uv ∈ E(G)} .

3 Main results

Table 1. Edge partition of graph of TUAC6[m,n] armchair polyhex nanotube based on degree sum
of vertices lying at unit distance from end vertices of each edge.

(Su, Sv), where u,v ∈ E(H) (5,5) (5,8) (8,8) (8,9) (9,9)

Number of edges m 2m m 2m 9mn − 4m

Theorem 3.1. Let G be the armchair nanotube TUAC6[m,n] ∀ m,n ∈ E(G). Then the AG2 index
of G is equal to

AG2(G) = (9n − 2.0588)m.

Proof.

AG2(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2
√

SG(u).SG(v)
.
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This implies that

AG2(TUAC6[m,n]) = (5,5)
(

5 + 5
2
√

25

)
+ (5,8)

(
5 + 8
2
√

40

)
+ (8,8)

(
8 + 8
2
√

64

)
+ (8,9)

(
8 + 9
2
√

72

)
+ (9,9)

(
9 + 9
2
√

81

)
= m (1) + (2m)

(
13

2
√

40

)
+ (m) (1) + (2m)

(
17

2
√

72

)
+ (9mn − 4m) (1)

= 9mn − 2m +
13m√

40
+

17m√
72

=

(
9n − 2 +

13√
40

+
17√
72

)
m

= (9n − 2.0588)m.

Theorem 3.2. Let G be the armchair nanotube TUAC6[m,n] ∀ m,n ∈ E(G). Then the SK3 index of
G is equal to

SK3(G) = (81n + 7)m.

Proof.

SK3(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2

.

This implies that

SK3(TUAC6[m,n]) = (5,5)
(

5 + 5
2

)
+ (5,8)

(
5 + 8

2

)
+ (8,8)

(
8 + 8

2

)
+ (8,9)

(
8 + 9

2

)
+ (9,9)

(
9 + 9

2

)
= m (5) + (2m)

(
13
2

)
+ (m) (8) + (2m)

(
17
2

)
+ (9mn − 4m) (9)

= 5m + 13m + 8m + 17m + 81mn − 36m

= 81mn + 7m

= (81n + 7)m.

Theorem 3.3. Let G be the armchair nanotube TUAC6[m,n] ∀ m,n ∈ E(G). Then the Sanskruti
index of G is equal to

S(G) = (1167.75n − 75.58)m.

Proof.

S(G) = ∑
uv∈E(G)

(
SG(u)SG(v)

SG(u) + SG(v)− 2

)3

.
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This implies that

S(TUAC6[m,n]) = (5,5)
(

25
5 + 5 − 2

)3

+ (5,8)
(

40
5 + 8 − 2

)3

+ (8,8)
(

64
8 + 8 − 2

)3

+ (8,9)
(

72
8 + 9 − 2

)3

+ (9,9)
(

81
9 + 9 − 2

)3

= m
(

25
8

)3

+ 2m
(

40
11

)3

+ m
(

64
14

)3

+ 2m
(

72
15

)3

+ (9mn − 4m)

(
81
16

)3

= m (3.125)3 + 2m (3.6363)3 + m (4.5714)3 + 2m (4.8)3

+ (9mn − 4m) (5.0625)3

= (1167.75n − 75.58)m.

Conclusion

In this paper, we have computed the value of AG2 index, SK3 index and Sanskruti index
for TUAC6[m,n] armchair polyhex nanotube without using computer.
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