[1] A. Alejo-Molina and et al., Complex dispersion relation of 1D dielectric photonic crystal with thin metallic layers, Microelectronics Journal, 40 (2009) 459–461.
[2] A. F. Ali, S. Das and E. C. Vagenas, Discreteness of Space from the Generalized Uncertainty Principle, Phys. Lett. B678 (2009) 497–499.
[3] D. Amati, M. Ciafaloni and G. Veneziano, Can spacetime be probed below the string size?, Phys. Lett. B216 (1989) 41–47.
[4] C. Bambi and F. R. Urban, Natural extension of the generalized uncertainty principle, Class. Quant. Grav. 25 (2008) 095006 [arXiv:0709.1965].
[5] M. Birkholz, P. F. Fewster and C. Genzel, Thin Film Analysis by X-Ray Scattering. Weinheim: Wiley-VCH, 2005.
[6] A. B. Chwang and et al., Thin film encapsulated flexible organic electroluminescent displays, Appl. Phys. Lett. 83 (2003) 413–415.
[7] S. Das and E. C. Vagenas, Phenomenological implications of the generalized uncertainty principle, Can. J. Phys. 87 (2009) 233–240.
[8] S. Hossenfelder and et al., Collider signatures in the Planck regime, Phys. Lett. B575 (2003) 85–99.
[9] F. J. Lawrence and et al., Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition. Appl. Phys. Lett. 93, 1114 (2008) DOI: 10.1063/1.2992066.
[10] M. Maggiore, A generalized uncertainty principle in quantum gravity, Phys. Lett. B304 (1993) 65– 69.
[11] M. Maggiore, Quantum groups, gravity, and the generalized uncertainty principle, Phys. Rev. D49 (1994) 5182–5187.
[12] M. Ohring, Materials Science of Thin Films (2nd ed.), Boston: Academic Press, 2001.
[13] F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment, Phys. Lett. B452 (1999) 39–44.
[14] K. Seshan, ed. Handbook of Thin Film Deposition (3rd ed.). Amsterdam: Elsevier, 2012.
[15] D. Tong, The Quantum Hall Effect, TIFR Infosys Lectures, Cambridge, UK, 2016.
[16] Y. Zhang and et al., Experimental observation of the quantum Hall effect and Berrys phase in graphene, Nature 438 (2005) 201–204 .