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Abstract. In this paper, we study the energy levels of an electron moving in a thin film. This film
is considered as a two-dimensional electron gas which is under the influence of a uniform external
magnetic field B and a uniform external electric field E. Here, the magnetic field is perpendicular
to the film. Also, we have selected the Landau gauge, since it is useful for working in rectangular
geometries.
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1 Introduction

A thin film is a liquid or solid matter such that one of its linear dimensions is very small
in comparison with the other two dimensions. These films are produced by a process in the
form of substrate growth. In other words, they are made by means of sustaining an atomic or
molecular flux to the surface of the substrate and subsequently by growing of the substrate.
Substrate growth will either involve chemical reaction at the substrate such as discharge
of ions, decomposition of a compound, reaction of a gas or liquid with substrate surface;
or physical processes such as evaporation from a source and sputtering from a target, then
condensation onto the substrate. Basically, we can classify thin films (arbitrarily) into: 1. Very
thin films with a thickness less than 50 A◦, 2. Thin films with a thickness of between 50 A◦ to
5000 A◦, 3. Thick films with a thickness of more than 5000 A◦.

As mentioned above, thin films are planes with a thickness between 50 A◦to 5000 A◦.
Also, they are designed from a variety of materials including metals, insulators, and semi-
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conductors with a atomic precision. Thin films can be classified in the category of nanostruc-
tured coatings. The properties of the solid surface are modified for thin films, because the
film structure and the limited thickness determine the physical properties. Thus, the effects
of the geometric anisotropy and size should be studied [5, 12].

During the 20th century, with improvement in deposition techniques in thin films, a wide
range of technological breakthroughs has been enabled in areas such as magnetic record-
ing media, electronic semiconductor devices, LEDs, optical coatings (such as antireflective
coatings), hard coatings on cutting tools, and for both energy generations (e.g. thin film so-
lar cells) and storage (thin-film batteries). It is also being applied for pharmaceuticals, via
thin-film drug delivery. In addition, thin films play an important role in the development
and study of materials with new and unique properties. For example, multiferroic materials,
and superlattices help us in study of the quantum confinement by creating two-dimensional
electron states [1]- [14].

The energy levels of an electron moving in a thin film has been investigated in this paper.
This film is supposed as a two-dimensional electron gas which is under the influence of a
uniform external magnetic field B and a uniform external electric field E. Here, the magnetic
field is perpendicular to the film. The Landau gauge has been selected, because it is useful
for working in rectangular geometries.

2 Landau levels

In this section, we will review the quantum mechanics of free particles moving in a back-
ground magnetic field and the resulting phenomenon of Landau levels [15]. Throughout this
discussion, we will neglect the spin of the electron. The reason is that, in the presence of a
magnetic field B, there is a Zeeman splitting between the energies of the up and down spins
given by △ = 2µBB where µB = eh̄

2m is the Bohr magneton. We are interested in large mag-
netic fields, where high energies are needed to flip the spin. This means that, if we restrict to
low energies, the electrons act as if they are effectively spinless. Before we get to the quan-
tum theory, we first need to briefly review some of the structure of classical mechanics in the
presence of a magnetic field.

2.1 Canonical variables

The Lagrangian for a particle of charge −e and mass m moving in a background magnetic
field B =∇× A is

L =
1
2

mẊ2 − eẊ.A, (1)

under a gauge transformation A → A +∇α, the Lagrangian changes by a total derivative
L → L − eα̇. This is to ensure that the equations of motion remain unchanged under a gauge
transformation. The canonical momentum arising from this Lagrangian is

P =
∂L
∂Ẋ

= mẊ − eA. (2)
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Now, we can compute the Hamiltonian

H = Ẋ.P − H =
1

2m
(P + eA)2, (3)

we need to remember which variables are canonical. This information is encoded in the
Poisson bracket structure of the theory and, in the quantum theory, is transferred onto com-
mutation relations between operators. The fact that X and P are canonical means that{

xi, pj
}
= δij,

{
xi, xj

}
=

{
pi, pj

}
= 0, (4)

here, P is not gauge invariant. This means that the numerical value of P can not have any
physical meaning since it depends on our choice of gauge. In contrast, if the mechanical mo-
mentum mẊ is gauge invariant, it measures what you would physically call ”momentum”.
But it does not have canonical poisson structure.

2.2 Quantisation

Now, we are going to solve the spectrum and wavefunctions of the quantum Hamiltonian,
H = 1

2m (P + eA)2. Note that P and A are quantum operators. Since, the particle is restricted
to lie in the plane, we consider X = (x,y). Also, we consider the magnetic field to be constant
and perpendicular to this plane (∇× A = Bẑ. The canonical commutation relations as are
follows [

xi, pj
]
= ih̄δij,

[
xi, xj

]
=

[
pi, pj

]
= 0. (5)

To find wavefunctions corresponding to the energy eigenstates, we first need to specify
a gauge potential A such that (∇× A = Bẑ. Of course, there is not a unique choice. Here,
we work with the choice A = xBŷ, which is called Landau gauge. Note that the magnetic
field B is invariant under both translational symmetry and rotational symmetry in the (x,y)-
plane. However, the choice of A is not invariant, as it breaks translational symmetry in the x
direction (but not in the y direction) and rotational symmetry. This means, while the physics
will be invariant under all symmetries, the intermediate calculations will not be manifestly
invariant. So, the Hamiltonian can be written as

H =
1

2m
(p2

x + (py + eBx)2), (6)

since we have translational invariance in the y direction, we can show that energy eigenstates
are also eigenstates of py. These are just plane waves in the y direction. This motivates an
ansatz using the separation of variables, ψk(x,y) = exp(iky) fk(x). Acting on this wavefunc-
tion with the Hamiltonian, we see that the operator py just gets replaced by its eigenvalue h̄k.
In other words, we have

Hψk(x,y) =
1

2m
(p2

x + (h̄k + eBx)2)ψk(x,y) ≡ Hkψk(x,y). (7)

Now, the Hamiltonian reduce to the Hamiltonian for a harmonic oscillator in the x direction
with the center displaced from the origin. Therefore, we have

Hk =
1

2m
p2

x +
mω2

B
2

(x + kl2
B)

2, (8)
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where wB = eB
m is the frequency of the harmonic oscillator. Also, lB =

√
h̄

eB is a characteristic
length scale which is called the magnetic length. For example, in a magnetic field of B =

1 Tesla, the magnetic length for an electron is lB ≈ 2.5 × 10−8m. On the other hand, the
momentum in the y direction, h̄k, has turned into the position of the harmonic oscillator in
the x direction, which is now centred at x = −kl2

B. So, we can obtain the energy eigenvalues
as

En = h̄ωB(n +
1
2
). (9)

Also, we can write down the explicit wavefunctions as

ψn,k ∼ exp(iky)Hn(x + kl2
B)exp

−(x + kl2
B)

2

2l2
B

, (10)

where the wavefunctions depend on two quantum numbers, n ∈ N and k ∈ R. Also, Hn are
the usual Hermite polynomial wavefunctions of the harmonic oscillator. The ∼ reflects the
fact that we have made no attempt to normalise these wavefunctions.

3 Effects of an electric field

One of the things that is particularly easy in the Landau gauge is the addition of an electric
field

−→
E in the x direction. We can show this by the addition of an electric potential ϕ =−Ex.

So, the Hamiltonian become

H =
1

2m
(p2

x + (py + eBx)2)− eEx, (11)

then, we have[
1

2m
P2

X +
mω2

B
2

(X + kl2
B)

2 + ekl2
BE − e2E2

2mωB2

]
ψn,k(X,y) = En,kψn,k(X,y), (12)

where
ψn,k(X,y) = ψn,k(x − mE

eB2 ,y), (13)

and the energies are as

En,k = h̄ωB(n +
1
2
) + eE(kl2

B − eE
mω2

B
) +

m
2

E2

B2 . (14)

Now, the energy in each level depends linearly on k, so the degeneracy in each Landau
level has been lifted. Because the energy depends on the momentum, it means that states
drift in the y direction. The group velocity becomes

vy =
1
h̄

∂En,k

∂k
= eh̄El2

B =
E
B

. (15)
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Using equation (14), we obtain a natural interpretation which a wavepacket with momen-
tum k is localised at position x = −kl2

B + eE
mω2

B
, where its potential energy can be thought as

ϕ = −Ex = eE(kl2
B − eE

mω2
B
) and the kinetic energy for the particle can be written as 1

2 mv2
y =

m
2

E2

B2 .

4 Effect of generalized uncertainty principle

As we know, Heisenberg obtained the Uncertainty Principle on very general grounds, us-
ing only the quantization of the electromagnetic radiation field. He did not consider gravita-
tional effects in his uncertainty relation, whidh are often assumed to be negligible. However,
at increasingly high energies, the gravitational interaction becomes more important. Various
approaches to quantum gravity (such as string theory, doubly special relativity theories, as
well as black hole physics) suggest that near the Planck scale, the Heisenberg Uncertainty
Principle should be modified. The modified Uncertainty Principle is called Generalized Un-
certainty Principle (GUP) [3,8,11]. These corrections are generically quite small to be measur-
able. However, they could signal a new intermediate length scale between the electroweak
and the Planck scale [7]. A generalized uncertainty principle (GUP) which is consistent with
String theory, Doubly Special Relativity theories and Black hole Physics is [2]

[xi, pj] = ih̄[1 + βp2]δij, (16)

where [xi, xj] = 0, [pi, pj] = 0 (via the Jacobi identity), p2 = pi pi, β = β0/MPl, MPlc2 =

Planck energy = lPl
h̄ ≈ 1019GeV, and lPl =

√
Gh̄
c3 ≈ 10−35m Planck length. It is assumed that

the dimensionless parameter β0 is of the order of unity, in which case the β dependent terms
are important only when energies (momentum) are comparable to the Planck energy (mo-
mentum), and lengths are comparable to the Planck length. The following definitions,

pi = p0i(1 + βp2
0) xi = x0i, (17)

satisfy the equation (16). p0i is the canonical momentum (p0i = −ih̄ ∂
∂x0i

) and x0i, p0i satisfy
the canonical commutation relations

[x0i, p0i] = ih̄δij [x0i, x0j] = 0 [p0i, p0j] = 0. (18)

Here, p0i is the momentum at low energies and pi (the modified momentum) is the momen-
tum at higher energies [2]. Now, if we substitute relations (17) in equation (11), we obtain

H′ =
1

2m

[
px + βp2px

]2
+

1
2m

[
py + βp2py + eBx

]2
− eEx

≃ H +
β

m

[
p4 + eB(xp3

y + pyxp2
x − ih̄py px)

]
. (19)

Because β is a very small parameter, we have neglected the terms of the order of β2. Also,
using the perturbation theory, we can write H′ = H + βV and calculate the first order correc-
tion of the energy eigenvalues by ∆(1)

n,k =< ψn,k|V|ψn,k >. Then, using equation (14), we have
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E′
n,k = En,k + β∆(1)

n,k .

Concluding Remarks: In this paper, using the landau gauge, we studied the energy lev-
els of an electron moving in a thin film. A two-dimensional electron gas for this film was
considered under the influence of a uniform external magnetic field B and a uniform exter-
nal electric field E. Here, the magnetic field was perpendicular to the film. We saw that a
wavepacket with momentum k was localised at position x = −kl2

B + eE
mω2

B
. Also, the kinetic

energy for the particle was found as m
2

E2

B2 . In fact, if we put an electric field E perpendicular
to a magnetic field B, the cyclotron orbits the electron drift. However, they do not drift in
the direction of the electric field; instead they drift in the direction E × B. Here, we see the
quantum version of this statement. Finally, using the perturbation theory, we can study the
effect of GUP on our model.
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