Some topological indices of fluorographene

Document Type : Full Length Article

Authors

1 Department of Studies in Mathematics University of Mysore, Manasagangotri Mysuru - 570 006, INDIA

2 Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru570 006, INDIA

Abstract

ABC index, ABC4 index, Randic connectivity index, Sum connectivity index, GA index, GA5 index, harmonic index, second zagreb index and AZI of Fluorographene are computed.

Graphical Abstract

Some topological indices of fluorographene

Keywords


[1] J. S. Chen and X. F. Guo, The atom-bond connectivity index of chemical bicyclic graphs, Appl. Math. J. Chin. Univ. 27 (2012) 243–252.
[2] S. Chen and W. Liu, The geometric-arithmetic index of nanotubes, Journal of Computational and Theoretical Nanoscience, 7 (2010) 1993–995.
[3] J. Chen, J. Liu and X. Guo, Some upper bounds for the atom-bond connectivity index of graphs, Appl. Math. Lett. 25 (2012) 1077–1081.
[4] K. Ch. Das and Ivan Gutman, Some properties of the second zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103–112.
[5] K. Ch. Das and N. Trinajstic, Comparision between first geometric-arithmetic index and atom- ´ bond connectivity index, Chem. Phys. Lett. 497 (2010) 149–151.
[6] H. Deng, S. Balachandran, S. K. Ayyaswamy and Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 (2013) 2740–2744.
[7] E. Estrada, L. Torres, L. Rodr´ıguez and I. Gutman, An atombond connectivity index: modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry–Section A: Inorganic, Physical, Theoretical and Analytical Chemistry, 37 (1998) 849–855.
[8] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chemical Physics Letters, 463 (2008) 422–425.
[9] S. Fajtlowicz, On conjectures of Graffiti–II, Congr. Numer. 60 (1987) 187–197.
[10] M. R. Farahani, Computing fourth atom-bond connectivity index of V-Phenylenic Nanotubes and Nanotori, Acta Chimica Slovenica, 60 (2013) 429–432.
[11] M. R. Farahani, On the fourth atom-bond connectivity index of armchair polyhex nanotubes, Proceedings of the Romanian Academy, Series B, 15 (2013) 3–6.
[12] M. R. Farahani, Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons PAHs, Journal of Chemica Acta, 2 (1) (2013) 70–72.
[13] O. Favaron, M. Maheo and J.-F. Sacl ´ e, Some eigenvalue properties in graphs (conjectures of Graffiti. ´ II). Graph theory and combinatorics (Marseille-Luminy, 1990). Discrete Math. 111 (1-3) (1993) 197– 220.
[14] B. Furtula, A. Graovac and D. Vuki ´ cevi ˇ c, Atom-bond connectivity index of trees, Discrete Appl. ´ Math. 157 (2009) 2828–2835.
[15] B. Furtula, A. Graovac and D. Vukicevic, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370– ´ 380.
[16] M. Ghorbani and M. A. Hosseinzadeh, Computing ABC4 index of nanostar dendrimers, Optoelectronics and Advanced Materials, Rapid Communications, 4 (2010) 1419–1422.
[17] A. Graovac, M. Ghorbani and M. A. Hosseinzadeh, Computing fifth Geometric-Arithmetic index ´ for nanostar dendrimers, J. Math. NanoScience, 1 (1) (2011) 33–42.
[18] I. Gutman and N. Trinajsti, Graph theory and molecular orbitals. Total Π - electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[19] I. Gutman, B. Furtula and M. Ivanovic, Notes on trees with minimal atom-bond connectivity index, ´ MATCH Commun. Math. Comput. Chem. 67 (2012) 467–482.
[20] F. Harary, Graph Theory, Addison Wesley, Reading Mass, 1969.
[21] K. I. Ho, C. H. Huang, J. H. Liao, W. Zhang, L. J. Li and et al., Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics, Sci. Rep. 4 (2014) 5893–5900.
[22] M. H. Khalifeh, H. Yousefi-Azari and A.R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804–811.
[23] J. Liu, On the Harmonic Index of Triangle-Free Graphs, Appl. Math. 4 (2013) 1204–1206.
[24] M. Randic, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615. 
[25] D. Vukicevi ˇ c and B. Furtula, Topological index based on the ratios of geometrical and arithmetical ´ means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376.
[26] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011) 1026– 1030.
[27] L. Xiao, S. Chen, Z. Guo and Q. Chen, The geometric arithmetic index of benzenoid systems and phenylenes, Int. J. Contemp. Math. Sci, 5 (2010) 2225–2230.
[28] R. Xing and B. Zhou, Extremal trees with fixed degree sequence for atom-bond connectivity index, Filomat, 26 (2012) 683–688.
[29] R. Xing, B. Zhou and F. Dong, On atom-bond connectivity index of connected graphs, Discrete Appl. Math. 159 (2011) 1617–1630.
[30] R. Xing, B. Zhou and Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math. 158 (2010) 1536–1545.
[31] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270. ´
[32] B. Zhou and N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218. ´ [33] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
[33] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
Volume 9, Issue 1
Special Issue of the IGTC 16
2024
Pages 1-15
  • Receive Date: 24 January 2024
  • Revise Date: 03 February 2024
  • Accept Date: 16 February 2024
  • Publish Date: 01 March 2024