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1 Introduction

Graphene is a potential candidate material used in building of next-generation nanoelec-
tronic and optoelectronic devices due to its unique properties, such as optical, mechanical
flexibility and high carrier mobility [21]. Layer of graphene is typically used to build field
effective transistors (FETs) on oxidized silicon wafers (insulator). Graphene oxide (GO), one
type of graphene-based insulator, is often applied as a gate dielectric material in electronic de-
vices, such as resistive random-access memory (RRAM) and thin film transistors. However,
GC is having major drawbacks in having the low thermal stability, this reduces its dielectric
resistivity. Thus, it is of great challenge to find new suitable dielectric materials for use in
the fabrication of nano-scale devices. The exposure of graphene to atomic flourine(F) results
in a stoichiometric derivative that is an excellent insulator with high thermal and chemical
stability results in fluorographene. Fluorinated graphene(FG), one of the thinnest insulators
known, is an attractive 2D material. The optical and electrical properties of FG are radically
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different from those of graphene, graphene oxide and hydrogenated graphene, due to a wide
gap opened in the electronic spectrum. Mechanically, FG is remarkably stiff but stretchable,
similar to its record-breaking parent, graphene.

Topological indices are numbers associated with molecular graphs for the purpose of al-
lowing quantitative structure activity /property/toxicity relationships. Topological indices
are the molecular descriptors that describe the structures of chemical compounds and they
help us to predict certain physicochemical properties like boiling point, enthalpy of vaporiza-
tion, stability and so on. In this paper, we determine the topological indices like atom-bond
connectivity index, fourth atom-bond connectivity index, sum connectivity index, Randié
connectivity index, geometric-arithmetic connectivity index, fifth geometric-arithmetic con-
nectivity index, harmonic index, second Zagreb index and augmented Zagreb index of fluo-
rographene.

All molecular graphs considered in this paper are finite, connected, loopless, and without
multiple edges. Let G = (V,E) be a graph with n vertices and m edges. The degree of a
vertex u € V(G) is denoted by d, and is the number of vertices that are adjacent to u. The
edge connecting the vertices u and v is denoted by uv. Using these terminologies, certain
topological indices are defined in the following manner.

The atom-bond connectivity index, ABC index, is one of the degree based molecular de-
scriptors introduced by Estrada et al. [7] in late 1990s, and it can be used for modelling ther-
modynamic properties of organic chemical compounds; it is also used as a tool for explaining
the stability of branched alkanes [8]. Some upper bounds for the atom bond connectivity in-
dex of graphs can be found in [3]. The atom-bond connectivity index of chemical bicyclic
graphs and connected graphs can be seen in [1,29]. For further results on ABC index of trees,
see the papers [14,19,28,30] and the references cited therein.

([7]) Let G = (V,E) be a molecular graph, and d,, is the degree of the vertex u, then ABC
index of G is defined as

(du +d’v _2)

ABC(G)= ). i

uv€E(G)

The fourth atom-bond connectivity index, ABC4(G) index, was introduced by Ghorbani
and Hosseinzadeh [16] in 2010. Further studies on ABC4(G) index can be found in [10, 11].
([16]) Let G be a graph, then the fourth atom-bond connectivity index of G is defined as

meio)= TS

uveE(G)

where S, is sum of the degrees of all neighbors of vertex u in G. In other words, S, =
Z dy, similarly for S,
uveE(G)
The first and oldest degree based topological index is Randi¢ index [24] denoted by x(G)
and it was introduced by Milan Randi¢ in 1975. It provides a quantitative assessment of the
branching of molecules.
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([24]) For the graph G, Randi¢ index is defined as
1

G) = L
x(G) uvg(c) T

Sum connectivity index belongs to a family of Randi¢ like indices and it was introduced
by Zhou and Trinajsti¢ [31]. Further studies on sum connectivity index can be found in [32].
([31]) For a graph (G), Sum connectivity index S(G) is defined as

1
5(G) = S —
uveZ:E(G) Vdy +dy

The geometric-arithmetic index, GA(G) index, of a graph G was introduced by Vukic¢evié
and Furtula in [25]. Further studies on GA index can be found in [2,5,17,27].
([25]) For a graph (G), geometric-arithmetic index GA(G) is defined as

2v/dydy

du+dv

GA(G) = Y

uveE(G)

The fifth geometric-arithmetic index, GAs(G), was introduced by Graovac¢ et al. [17] in
2011.
([17]) For a graph G, the fifth geometric-arithmetic index is defined as

2y/5,S
GAs(G)= ), 3, +”S:,

uv€E(G)

where S, is sum of the degrees of all neighbors of vertex u in G, similarly for S,.

The harmonic index first appeared in [9]. Favaron et al. in [13] considered the relation
between the harmonic index and the eigenvalues of graphs. The relation between harmonic
index and chromatic number is found in [6]. For further results on harmonic index see the
papers [23,33].

([9]) For a graph G, the harmonic index is defined as

H(G)= ),

uv€E(G)

d,+d,

The first and second Zagreb index of a graph were first introduced by I. Gutman and
N. Trinajsti¢ in [18]. Some properties of the second Zagreb index are found in [4]. The first
Zagreb index, second Zagreb index, first Zagreb polynomial and second Zagreb polynomial
of a family of hydrocarbon structures “Polycyclic Aromatic Hydrocarbons” (PAH) are found
in [12]. For further results on Zagreb indices see the papers [22,26].

([18]) For a graph G, the second Zagreb index is defined as

My(G)= ) dudy.
uv€E(G)

3
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The augmented Zagreb index (AZI) was first introduced by Furtula et al. in [15] and they
showed that AZI index is a valuable predictive index in the study of the heat of formation in
octanes and heptanes, whose prediction power is better than atom-bond connectivity index.
([15]) For a graph G, the augmented Zagreb index is defined as

dudy, >

uv€E(G)

2 Main Results

Theorem 2.1. The atom-bond connectivity index of fluorographene with t rows and s fluorine at-
tached benzene rings in each row is given by

12((11\/—+8\/_+3\/_)s—|—(13\/— 8v15 — 123 +12)),if t = 1;
ABC(G) =

5.4397s + 2.9783t + 3.5692st — 0.62675, ift #1.

Proof. Consider a fluorographene with t rows and s fluorine attached benzene rings in each
row. Let m; ; denote the number of edges connecting the vertices of degrees d; and d;. Two -
dimensional structure of fluorographene (as shown in Figure 1) contains only m 3,m33,m3 4,
my 4 and my 4 edges. In Figure 1. my 3,m33,m3 4,my4 4 and my 4 edges are colored in blue, cyan,
black, red and green, respectively. The number of m 3,m33,m34,m4 4 and mj 4 edges in each
row is mentioned in Table 1. Therefore, fluorographene contains m; 3 = 2(s +t + 1) edges,
mz3 =t +4edges, m34 =4s+ 2t — 4 edges, mgq =3st —2s —t — 1 edges and my 4 =2(st — 1)
edges.

Case 1: t # 1. The atom-bond connectivity index of fluorographene is

ABC(G) = Z L_)

uveE(G

/1+3 2) [(3+3-2) [3+4-2)
=mi3 1.3 ms33 3.3 + m34 3.4
N 4—|—4 2 1+4 2
A\ Ty A Ty
5 6

2(s+t+1)\/;+(t+4)\/;+(45+2t 4)\/ g5+ (st 25—t 1)/ =

3
+2(st—1)\/;

= 5.4397s + 2.9783t + 3.5692st — 0.62675.
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Figure 1. 2-dimensional structure of fluorographene.

Row my3 ms 3 ms 4 My 4 mi4

1 s+3 3 2s 3s —2 2s -1

2 2 1 2 3s—1 25

3 2 1 2 3s—1 2s

4 2 1 2 3s—1 2s
(t—2) 2 1 2 35— 1 2s
(t—1) 2 1 2 35— 1 2s

t s+ 3 3 2s s—1 2s—1
Total |2(s+t+1) | t+4 | 4s+2t—4 |3st—2s—t—1|2(st—1)

Table 1. The number of edges in each row.

Case 2: t =1. We have my3 = 2(s + 2) edges, m33 = 6 edges, m34 = 4(s — 1) edges,
mys =s — 1 edges and my 4 = 2(s — 1) edges as shown in Figure 2.

(4+4-2) (1+4-2)
el e e s
2 4 5 /| 6 3

= (16 +8VI5+3V3)s + (136 — 8v/15 - 12V3 +12))



Padmapriya P et al. /Journal of Discrete Mathematics and Its Applications 9 (2024) 1-15

N
1 4 . s
— —

Figure 2. Edges of Case 2.

Theorem 2.2. The fourth atom-bond connectivity index of fluorographene is

(4
S(V42+3V3), ft=1s=1

ABC4(G) = § 441645 — 2.2542, ift=1,5>1;

[ 2.2128s 4 2.2159t + 2.2047st — 1.6037, if t # 1.

Proof. Let e;; denote the number of edges of fluorographene with i = S, and j = S,. Two-
dimensional structure of fluorographene contains only e37, 33, €39, €411, €412, €413, €7,8, €88,
€811, €812, €911, €11,13, €12,12, €12,13 and e13 13 edges which are colored in apricot, brown, ma-
genta, green, blue, orange, violet, gray, cyan, peach, black, yellow, maroon, sepia and red
respectively as shown in Figure 3. The numbers of €37,638,639,6411,€4,12, €4,13, €7,8, €8,8, €8,11,

s—1 =5

1 2 3 4

NSNS NS
Figure 3. The color of edges in Theorem 2.2.
€812, €911, €11,13, 12,12, €12,13 and e13 13 edges in each row is mentioned in Table 2.

6
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Row €37 €338 €39 €411 €412 €413 €78 | €88 | €811
1 1 4 s—2 S - (s—1) 2 1 4
2 - 2 - - 2 2(5 — 1) - 1 -
3 - 2 - - 2 2(5 — 1) - 1 -
4 - 2 - - 2 2(s—1) - 1 -
(t—2)| - 2 - - 2 2(s—1) - 1 -
t—1) | - 2 - - 2 2(s—1) - 1 -
t 1 4 s—2 S - s—1 2 1 4
Total 2 | 2(t+2) | 2(s—=2)| 25 |2(t—=2) |2(t—1)(s—1) | 4 t 8
Row €8,12 €911 €11,13 | €12,12 €12,13 €13,13
1 1 2(s—2) S - 1 2s—3
2 2 - - 1 2 3s —4
3 2 - - 1 2 3s —4
4 2 - - 1 2 3s—4
(t—2) 2 - - 1 2 3s — 4
(t—1) 2 - - 1 2 3s —4
t 1 2(s—=2) | s - 1 -
Total |[2(t—3) |4(s—2)| 2s |t—2|2(t—3)|3st—4s—4t+5
Table 2. The number of edges in each row.
Case 1: t # 1. The fourth atom-bond connectivity index of fluorographene is
ABC,(G)= Y —5“ +50=2)
uv€E(G)
. (3+7 2) (3+8_2)+e (3+9-2)
TO7\ T3y T8\ T3y ¥V 3.9
n [(4+11-2 [(4+12—2) [(4+13—2)
€411 111 +e412 1.1 + €413 T 1.13 13
7+8—2 8+8—2 8+11—
+e78\/ 7.8 ”88\/ 8-8 T
e [(8+12—2) e [(9+11—2) e \/11+13 2)
8,12 gy eu Tg.qp e 11-13
e \/12+12 2) e \/12+13 2) e \/(13+13—2)
12,12 012 12,13 1713 BB\ 313

8

9 10 13 14

21+2(t+2)\/ +2(s—2)\/ﬁ+25\/ +2(t =24/ 5

V14 18

2(t—1)( s—1\/ +4\/ —+8\/ 7 fo(t—3 5
2 /23

4 —2— 2s
+ 4(s + 14

t—2)—

+(3st—4s—4t+5) 13
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Case 2: t =1 and s > 1. Fluorographene contains only e37 =4, e33 =4, e39 = 2(s — 2),
es11=2(s—1),e77=2,e78=4,e311 =4,e911 =4(s —2),and e11 11 =s — 1, edges are colored
in blue, brown, magenta, green, gray, violet, cyan, black and red, respectively as shown in

Figure 4.

Figure 4. The color of edges in Theorem 2.2.

ABC4(G) = Z L‘z)
uveE(G)

(B3+7-2) 7+7-2)
=7 3. 7 €77 7.7

6
(\/—+3\f.

Theorem 2.3. The Randi¢ connectivity index of fluorographene is

15 (16 +5v3)s + (8 +3v/3)), ift=1;
x(G) =
L((16v/3 — 6)s + (12v/3 + 1)t +21st + 1), if t # 1.

Proof. We consider the following cases:

Casel: t #1,
KG)= ¥ —
uveE(G) dudy

1 1 1 1 1
Mi3———= +M33—F—= + M34—F—= t+ My4—F—= + M 4—F—=
RV TV % B Y - P I Y/ S RV o

1
(s b 1) b (A A)E (A5 2t —4) o (Bst— 25— £ —1)% 4 2(st — 1)
V3 3 23 4

= 11—2((16\/5— 6)s + (12v/3 + 1)t + 21st + 1).

N~

8
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Case2:t=1,
1
G = ) =
uveE(G) uxv
m ! +m ! +m ! +m 1 +m
BT VB NBEa T aa T
1 1 1 1 1
=(2s+4)—=+65;+45—-1)—F=+(s—1)-+2(s—1)
1
= —((16 +5V3)s + (8 +3V3
A )5+ (8+3v3))
Theorem 2.4. The sum connectivity index of fluorographene is
3.7598s + 1.6897, ift=1,

5(G) =
1.8048s + 1.8106t + 1.9551st — 0.12685, if t # 1.

Proof. We consider the following cases:

Casel: t #1,
S(G)— Z ;
uveE(G) V dy +dy
=m ! +m ! +m ! +m ! +m !
Y Y T BV SV era S Y
1 1 1
=2(s+t+1)=+(t+4)—+2(2s+t—2)—
(st 1)5 - (14) 2+ '
1 1
4+ (3st—2s—t—1)—+2(st—1)—
( )¢g ( x@
= 1.8048s 4 1.8106¢ 4 1.9551st — 0.12685.
Case2:t=1,
5 = Y ——
uveE(G) dy +dy
=m ! +m ! +m ! +m ! +m !
Y e o BV SV e S Y/ ey
1 1 1 1 1
=2(s4+2)=+6—=4+4(s—1)—=+(s—1)—=4+2(s—1)—
(5+2)5 4672 4l 1) (s = 1) 7o 20— 1) 2

= 3.7598s + 1.6897.
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Theorem 2.5. The geometric-arithmetic index of fluorographene is

A ((115v/3 4+ 91)s + (119 — 10V/3)), ift =1;
GA(G) =
A ((105v/3 + 70)s + (75v/3 + 70)t + 161st + (105v/3 +49)), if t # 1.

Proof. We consider the following cases:

Casel: t #1,
2+/d,d
GA(G) = ¥ R
uv€E(G) u T dy
2y/1-3 2\/ 2\/3-4 24 -4 2V/1-4
=my3 +m + + Mgy +my4
1+3 3343 Y314 444 144
2v/3 6 4v/3
:2(s+t+1)Tf+(t+4)6+2(2s+t—2)7f
+(3st—zs—t—1)§+z(st—1)§
315((105\/_+70)s—|—(75\/_—|-7O)t—|-16lst—|—(105\/_—|-49))
Case2: t=1,
uveE(G)

2v1-3 2v/3-3 2v/3-4 2v4-4 2v1-4

=MsTTy + M3 33 + M3A—3— g T Maa— ) + MAT T
—2(s +2)M+66 +4(s-1)£+( 1)§+2(s—1)§
315((115\/_—1—91)5—1— (119 — 10V/3)).
Theorem 2.6. The fifth geometric-arithmetic index of fluorographene is
(6(14 ¥2), ift =1,5=1;
GAs(G) =  8.4809s + 2.977, ift=1,5s>1;
[ 73.534s +- 3.7748t + 4.6967st — 4.7787, if t # 1.

Proof. We consider the following cases:

10



Padmapriya P et al. /Journal of Discrete Mathematics and Its Applications 9 (2024) 1-15

Casel:t #1,
2./5.5
GAs(G)= L G ts,
uveE(G) “H v
_, 2\/3-7+e 2\/3-8“ 2\/3-9+e 2411 , 2412
Ty WAy g TRy rg Ty T2 )

2v/4-13 2v7-8 2v/8-8 2v/8-11 2v/8-12

R R N R E VIR Fu T
e 2911 e 24/11-13 e 24/12-12
I IR TR 2 I )
e 2\/12-13“ 24/13-13
12,13 12+13 13,13 13+13
2\/ 4/6 6v/3 44/11 8v/3
\/_ \/_ 4/22 8v/6
20t —1 VAL L o —3)2Y2
+2(t-1)(s - ) 17 15 16+8 +2(t=3)=;
6+/11 2/14 24 44/39 26
+4(s—2) o 2575 +(t—2)24+2(t— )—+(3st—4s—4t+5)26

= 73.534s + 3.7748t + 4.6967st — 4.7787.

Case2: t=1and s >1. Wehaveesy; =4, e38 =4,e39=2(5s—2),e411 =2(s—1),ey7 =2,
€78 = 4, €811 = 4, €911 = 4(5 — 2), 11,11 =S — 1, as shown in Figure 4.

2v/548
646 = L 575,
uveE(G) “H v
2\/3-7+e 2\/3-8+e 2v39 2\/4-11+e 2V7 7 L 2478
7347 @83y TR g TNy Ty T8 g
. 2v/8 11 . 24/9 11 e 24/11-11
8,11 8+11 9,11 9+11 11,11 11+11
422y f+2(s—z)ﬂ+z( avit
10 11 15 14
4Wid | 4V 6\/ 22
+4 +4 4(5—2)——1—(5—1)—
15 19 20 22
— 8.4809s + 2.977.

Case 3: t=1and s = 1. We have e3 7 = 6, ey 7 = 6, as shown in Figure 5.

2./5.5, 237 2V77 _ 2V21 V21
A =) = = — =6(1+ ).
GAs(G) wolic) Sut S 73y Ty 10 +614 6(1+—5-)

11
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Figure 5. Case 3 in the proof of Theorem 2.6.

Theorem 2.7. The harmonic index of fluorographene is

125 (4475 + 253), ift=1;
H(G) =
1.6429s + 1.6548t + 1.55st + 0.14048, if t # 1.

Proof. We consider the following cases:

Casel: t #1,
2
H(G) =
uveE(G) dy + do
2 2 2 2
=mi;3 +m +m + My +m

1+3 " "3P343 " P43y 4+4 TV

2 2 2 2 2
=2s+ 1)+ (F+4) L +225+ = 2)7 + (B3t = 25—t = 1) +2(st —1)3

= 1.6429s + 1.6548¢ + 1.55st + 0.14048.

Case2:t=1,
HG) = ¥ —
uveE(G) du + do
=m 2 +m —+m +m +m 2
R T B e T B T e I R Y
2 2 2 2 2
=2(5+2)S+6=+4(s—1)=+(s—1)=+2(s—1)=
(s+ )4+ 6—|— (s )7+(s )8—I— (s )5
1
= ——(447s + 253).

14

Theorem 2.8. The second Zagreb index of fluorographene is

6(13s — 1), ift =1;
M,(G) =
225 + 23t + 525t — 30, if t # 1.

Proof. We consider the following cases:

12
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Casel:t #1,

My(G) = Y dudy
uveE(G)

= m1,3(1 . 3) + m3,3(3 . 3) + 7713,4(3 . 4) + TI”I4/4(4 . 4) + m1,4(1 . 4)
=2(s+t+1)3+ (t+4)9+2(2s++—2)12+ (3st —2s —t —1)16 4+ 2(st — 1)4
= 22s + 23t + 52st — 30.

Case2:t=1,

MyG) = Y dudy
uveE(G)

=my3(1-3) +m33(3-3) +m34(3-4)+myqs(4-4) +mys(1-4)
=2(s4+2)3+69+4(s—1)12+ (s —1)16+2(s — 1)4
— 6(13s — 1).

Theorem 2.9. The augmented Zagreb index of fluorographene is

85.750s + 2.844, ift =1,
AZI(G) =
24.125 + 26.826t + 61.630st — 26.687, if t # 1.

Proof. We consider the following cases:
Casel: t #1,

d,d, 3
AZI(G) = 2: i rd 3

uveE(G)

o 1-3 3+m 3+m 3.4 \°
B 1532 33 3+3 2 34\314-2
4.4 3 3
+m“(4+4—2>'+m“<1+4 2)
3\? 9 12
:2(s+t+1)(§) —I—(t+4)< ) + (45 + 2t — )<€)

3 3
b (@st—25—t—1) (%) +2(st—1) (g)
= 24.12s + 26.826t + 61.630st — 26.687.

13
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Case2:t=1,
AZIG)= Y. (&)3
uveE(G) dy + dy — 2

o 1-3 3+m 3.3 3+m 3-4 \°

B 1332 ¥\ 353-2 4\314-2
4.4 \° 1-4 \°

tiaa o ) T\,

e () o3 e (2) s () e 3

= 85.750s + 2.844.

Concluding Remarks: The problem of finding the general formula for ABC index, ABCy
index, Randi¢ connectivity index, sum connectivity index, GA index, GAs index, harmonic
index, second Zagreb index and AZI of fluorographene is solved analytically without using
a computer. The obtained values of indices of fluorographene are greater than those of the
graphen. This confirms that the fluorographene is more stable than the graphene and this
correlates with chemical analysis. Further, analysis of molecules using graph theory will
give an idea to study and compare the chemical nature and stability of the molecules.
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