The PI and vertex PI polynomial of dendimers

Document Type : Full Length Article

Author

Department of Science, Islamic Azad University, Savadkooh Branch, Savadkooh, Mazandaran, I. R. Iran

Abstract

Let G be a simple connected graph. The vertex PI polynomial of G is defined as PIv(G ,x )=Σe=uv Xnu(e)+nv(e) here nu(e) is the number of vertices closer to u than v and nv(e) is the number of vertices closer to v than u. The PI polynomial of G is defined as  PI(G ,x )=Σe=uv Xmu(e)+mv(e) , where mu(e) is the number of edges closer to u than v and mv(e) is the number of edges closer to v than u. In this paper, the PI and vertex PI polynomials of two types of dendrimers are computed.

Graphical Abstract

The PI and vertex PI polynomial of dendimers

Keywords


REFERENCES
1. A. R. Ashrafi, M. Ghorbani and M. Jalali, The vertex PI and Szeged polynomials of an in inite family of fullerenes, J. Theor. Comput. Chem., 2 (2008), 221-231.
2. M.V. Diudea, I. Gutman and L. Jantschi, Molecular Topology, Huntington, NY, (2001).
3. G. H. Fath-Tabar, T. Doslic and A. R. Ashrafi, On the Szeged and the Laplacian Szeged spectrum of a graph, Linear Algebra Appl., 433 (2010), 662-671.
4. G. H. Fath-Tabar, M. J. Nadjafi-Arani, M. Mogharrab and A. R. Ashrafi, Some inequalities for zeged-like topological indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010), 145-150.
5. G. H. Fath-Tabar, B. Furtula and I. Gutman, A new geometric-arithmetic index, J. Math. Chem., 47 (2010), 477 – 48.
6. I. Gutman, L. Popovic, P. V. Khadikar, S. Karmarkar, S. Joshi and M. Mandloi, Relations between Wiener and Szeged indices of monocyclic molecules, MATCH Commun. Math. Comput. Chem., 35 (1997), 91-103.
7. I. Gutman, P. V. Khadikar and T. Khaddar: Wiener and Szeged indices of benzenoid hydrocarbons containing a linear polyacene fragment, MATCH Commun. Math. Comput. Chem.,35 (1997), 105-116.
8. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, Linear Algebra Appl., 429 (2008), 2702-2709.
9. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math., 156 (2008), 1780-1789.
10. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math., 10 (2008), 1780-1789.
11. S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Applied Mathematics Letters, 9 (1996), 45-49.
12. M. Mogharrab and G. H. Fath-Tabar, Some Bounds on GA1 Index of Graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 33-38.
13. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17–20.
14. G. H. Fath-Tabar, Old and new Zagreb index, MATCH Commun. Math. Comput. Chem., 65 (2011), 79-84.
15. G. H. Fath-Tabar, Zagreb Polinomial and PI Indices of Some Nano Structurs,Digest Journal of Nanomaterials and Biostructures, 4 (2009), 189-191.
16. B. Manoochehrian, H. Yousefi-Azari and A. R. Ashrafi, PI Polynomial of Some Benzenoid Graphs, MATCH Commun. Math. Comput. Chem., 57 (2007),653-664.
17. M. V. Diudea, Omega Polynomial in All R[8] Lattices, Irnian. J. Math. Chem., 1(1)(2010), 69-77.
18. H. Mohamadinezhad-Rashti and H. Yousefi-Azari, Some New Results On the Hosoya Polynomial of Graph Operations, Iranian. J. Math. Chem.,1(2)(2010), 37-43.
19. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, Onszeged polynomial of a graph, Bull. Iranian Math. Soc., 33 (2007), 37-46.
20. G. H. Fath-Tabar and A. R. Ashrafi, The Hyper-Wiener Polynomial of Graphs, Iranian J. Math. Sci. Inf., 6 (2) (2011), 67–74.
Volume 1, 1-2
June 2011
Pages 59-65
  • Receive Date: 03 January 2011
  • Revise Date: 06 February 2011
  • Accept Date: 15 March 2011
  • Publish Date: 01 June 2011