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ABSTRACT. Let G be a simple connected graph. The vertex PI polynomial of G is defined 
as 

 ( ) ( )( , ) n e n e
e uvv

u vPI G x x , where un e( ) is the number of vertices closer to u than v 
and vn e( )  is the number of vertices closer to v than u. The PI polynomial of G is 
defined as m e m e

e uv
u vPI G x x ( ) ( )( , ) ,

 where um e( )  is the number of edges closer to u 
than v and vm e( )  is the number of edges closer to v than u. In this paper, the PI and 
vertex PI polynomials of two types of dendrimers are computed. 

 

Keywords: PI polynomial, vertex PI polynomial, Szeged index. 

 

1. INTRODUCTION  
 

Dendrimers are large and complex molecules with very well-defined chemical 
structures. They consist of three major architectural components: core, branches and 
end groups. Nanostar dendrimers are part of a new group of macromolecules. The 
topological study of these macromolecules is the subject of some recent papers [1,13]. 

Let G  be a connected simple molecular graph with vertex and edge sets )(GV
and )(GE , respectively. As usual, the distance between the vertices u  and v  of G  is 
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denoted by ),( vudG  (or ),( vud  for short) and it is defined as the number of edges in a 
minimal path connecting vertices u and v .  

The PI index of a graph G  is defined as   uve vu ememGPI )]()([)( , where 
)(emu  is the number of edges lying closer to u  than to v  and )(emv  is defined 

analogously. The vertex PI index of a graph G  is defined as 
  uve vuv enenGPI )]()([)( , where nu(e) is the number of vertices lying closer to u 

than to v and nv(e) is de ined analogously [28]. The PI and vertex PI polynomial of G 
are defined as:  

 


uve
enen

v vuxxGPI )()(),( ,  


uve
emem vuxxGPI )()(),( . 

The mathematical properties of these topological indices can be found in some 
recent papers [920].In this paper, our notation is standard and taken mainly from 
the standard book of graph theory. The goal of this article is to compute the PI and 
vertex PI polynomial of two classes of dendrimeric nanostars. 

 

2. THE PI AND VERTEX PI POLYNOMIAL OF NS[N] AND DENDRIMER D[N]. 
 

In this section, we compute the PI and vertex PI polynomial of dendrimer NS[n], 
where NS[n] is the following nanostar.  

We begin by stating some general theorem in graph theory. 

Theorem A ([12]). 



uve

eNEGPI )()( 2 , where  ),(),(|)( eydexdxyeN  . 

Theorem B. 



uve

eNE xxxGPI )(),( . 

Theorem C.  uvev eNVEGPI )()( , where )(eN  is the number of vertices of G  
with ),(),( vxduxd  , )(GVx . 

Theorem D.  


uve
eNV

v xxxGPI )(),( where N(e) is the number of vertices 
of G with ),(),( vxduxd  .  

Lemma 1.   823][ 4  nnNSV and   8252][  nnNSE . 

 

Jo
ur

na
l o

f 
M

at
he

m
at

ic
al

 N
an

oS
ci

en
ce

 



THE PI AND VERTEX PI POLYNOMIAL OF DENDIMERS 
 

61 
 

 

Figure 1.The Nanostar Dendrimer NS[4]. 

Theorem 2. If G = ][nNS  then 

  9252102522 )8228(26],[  
nn

xxxnNSPI nn , 

  226)9252)(8252(][  nnnnNSPI . 

Proof. Let uve   be an edge on hexagon then, 

10252282522)()(  nn
vu memem . 

A simple computation shows that if uve   is not an edge of hexagon then  

9252182521)()(  nn
vu memem . 

Thus, 

  9252102522 )8228(26],[  
nn

xxxnNSPI nn  

  226)9252)(8252(][  nnnnNSPI , 
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which completes the proof.   

Theorem 3.   823 4
],[  


n

xxnNSPIv  and   )8252)(823(][ 4   nn
v nNSPI . 

Theorem 4.If G  be a connected graph with k  disjoint even r-cycle then )(GPI 2m
krm  . 

Proof. If e )(GE then 1)( eN , otherwise 0)( eN . By Theorem A, )(GPI 2m
.krm   

Now we are ready to compute the PI and vertex PI polynomials of dendrimer 
D(n), depicted in Figure 2. 

Lemma 5. If N is the number of vertices of ][nD , then  

).
2

1)(
2

1 





 -i1n-i1n
iviu

3N3(  )(e)n(en  

Proof.From Figure 2,one can see that there are 
2

1 i-1n3
 vertices on one side of ie  

that are farther from the center. In this case, those are closer to a vertex of ie  that is 
farther from the center and the rest vertices are closer to the other vertex of ie . Thus  

).
2

1)(
2

1 





 i-1ni-1n
iviu

3N3(  )(e)n(en  

Lemma 6. If N is the number of vertices ][nD , then  

).
2

131)(1
2

13(  )(e)m(em
i-1ni-1n

iviu








N  

Proof. In Figure 2 for the edge ie  there are 1
2

13 i-1n




 edges on one side ie  that are 

farther from the center. In this case, those are closer to a vertex of ie  that is farther 
from the center and the rest edges are closer to the other vertex of ie . Thus   

).
2

131)(1
2

13(  )(e)m(em
i-1ni-1n

iviu








N  
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Figure 2.DendrimerD[2]. 

 

Theorem 7. If N is the number of vertices ][nD , then 

n 1-i n 1-i

n 1-i n 1-i

3 1 3 1( )( )
2 2

0

3 1 3 1( 1)( 1 )
2 2

e
0

P(Sz(G), x)= (4 3 ) ,

P(Sz (G), x)= (4 3 ) .

n Ni

i

n Ni

i

x

x

 

 

 



   










 

Proof. This dendrimer has exactly i34 edges in the ith stage. By two previous lemmas,
 )(e)n(en iviu and )(e)m(em iviu  are computed as:  

,)34( = x)(G),P(Sz

,)34( = x)P(Sz(G),

0

)
2

131)(1
2

13(

e

0

)
2

13)(
2

13(

i-1ni-1n

i-1ni-1n



























n

i

Ni

n

i

Ni

x

x

 

this completes the proof.                                                                                                         

Corollary 8. If N is the number of vertices ][nD , then 
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.)
2

131)(1
2

13()34( (G)Sz

,)
2

13)(
2

13()34( =Sz(G)

0

i-1ni-1n

e

0

i-1ni-1n

























n

i

i

n

i

i

N

N
 

The two indices are easily obtained by the calculated value of N . 
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