[3] S. Rakshit, B. N. Datta, Solution of the symmetric band partial inverse eigenvalue problem for the damped mass spring system, Inverse Problems in Science and Engineering 29 (2021) 1497–1518.
https://doi.org/10.1080/17415977.2021.1876688
[6] Y. Wei, H. Dai, An inverse eigenvalue problem for the finite element model of a vibrating rod, Journal of Computational and Applied Mathematics 300 (2016) 172–182.
https://doi.org/10.1016/j.cam.2015.12.038
[7] S. Caddemi, I. Calio, The influence of the axial force on the vibration of the euler-bernoulli beam with an arbitrary number of cracks, Archive of Applied Mechanics 82 (2012) 827–839.
https://doi.org/10.1007/s00419-011-0595-z
[9] A. M. Shubov, Generation of gevrey class semigroup by non-selfadjoint eulerbernoulli beam model, American Journal of Intelligent Systems 29 (2006) 2181–2199.
https://doi.org/10.1002/mma.768
[10] M. R. Moghaddam, H. Mirzaei, K. Ghanbari, On the generalized inverse eigenvalue problem of constructing symmetric pentadiagonal matrices from three mixed eigendata, Linear and Multilinear Algebra 63 (2015) 1154–1166.
https://doi.org/10.1080/03081087.2014.922969
[13] S. Arela-Perez, C. Lozano, H. Nina, H. Pickmann, Two Inverse Eigenproblems for Certain Symmetric and Nonsymmetric Pentadiagonal Matrices, Mathematics 10 (2022).
https://doi.org/10.3390/math10173054
[15] L, Jicheng, D. Liqiang, L. Guo, A class of inverse eigenvalue problems for real symmetric banded matrices with odd bandwidth, Linear Algebra and its Applications 541 (2018) 131–162.
https://doi.org/10.1016/j.laa.2017.12.004
[17] J. Peng, X. Y. Hu, L. Zhang, Two inverse eigenvalue problems for a special kind of matrices, Linear Algebra and its Applications 416 (2006) 336–347. https://doi.org/10.1016/j.laa.2005.11.017