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Abstract. The inverse eigenvalue problem involves constructing a matrix based on its spectral
information, along with providing conditions on the input data to determine the solvability of the
problem. In this paper, we focus on a specific instance of the inverse eigenvalue problem, known as
IEPSP, to generate symmetric pentadiagonal matrices using two pairs of eigenvalues from the desired
matrix and an additional eigenvalue from each of its leading principal submatrices. Additionally,
we explore a non-negative formulation of the inverse eigenvalue problem to produce a matrix that
has non-negative elements. We present sufficient conditions for problem solvability, propose an algo-
rithm, and provide several numerical examples to validate the results.
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1 Introduction

Consider a set of real numbers denoted by σ. The problem of finding necessary and
sufficient conditions for σ to be the spectrum of a matrix is known as the inverse eigenvalue
problem. Chu and Golub have done extensive work on this problem and classified various
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types of inverse eigenvalue problems, providing insights into their solutions [1].
This paper aims to focus on two types of inverse eigenvalue problems: structured inverse

eigenvalue problems and partial inverse eigenvalue problems. A structured inverse eigen-
value problem involves constructing a matrix in such a way that its zero entries follow a
specific pattern. Inverse eigenvalue problems have practical applications in various fields
such as control theory [2], mass-spring oscillations [3, 4], and finite element methods [5, 6].

In this paper, we address the construction of a symmetric pentadiagonal matrix denoted
as Pn as follows:

Pn =



a1 b1 c1 0 0 0 0 0 · · · 0
b1 a2 b2 c2 0 0 0 0 · · · 0
c1 b2 a3 b3 c3 0 0 0 · · · 0
0 c2 b3 a4 b4 c4 0 0 · · · 0
0 0 c3 b4 a5 b5 c5 0 · · · 0

0 0 0 . . . . . . . . . . . . . . . . . . 0
0 0 0 0 cn−5 bn−4 an−3 bn−3 cn−3 0
0 0 0 0 0 cn−4 bn−3 an−2 bn−2 cn−2

0 0 0 0 0 0 cn−3 bn−2 an−1 bn−1

0 0 0 0 0 0 0 cn−2 bn−1 an



. (1)

The matrix is constructed such that bici ̸= 0. The structure of pentadiagonal matrices has
various applications in discrete beam vibrations [7, 8], Euler-Bernoulli beam vibrations [15],
and non-Hermitian quantum mechanics [9]. Recent progress has been made in the construc-
tion of pentadiagonal matrices. Moghaddam et al. [10] investigated a generalized eigenvalue
problem of the form KnX = λMnX with three pairs of eigenvalues, where both Kn and Mn are
pentadiagonal matrices. Ghanbari and Mirzaei [8] proposed an algorithm to construct penta-
diagonal matrices with three prescribed eigenvalues such that the first off-diagonal element
of the matrix is negative, while all other elements are positive. Li et al. [15] studied the ap-
plication of pentadiagonal matrices in Euler-Bernoulli beam vibrations and investigated an
eigenvalue problem and an inverse eigenvalue problem. Perez et al. [13] focused on the con-
struction of symmetric and nonsymmetric pentadiagonal matrices using input data consist-
ing of minimum and maximum eigenvalues of each leading principal submatrix. Ghanbari
and Moghadam [14] studied an inverse eigenvalue problem for symmetric pentadiagonal
matrices using three sets of numbers, denoted as (λ)n

i=1, (µ)n
i=1, and (v)n

i=1. These sets of
numbers possess the interlacing property, such that:

0 <λ1 < µ1 < λ2 < µ2 < · · · < λn < µn,

µ1 < v1 < µ2 < v2 < · · · < µn < vn.

The spectral data of the problem is defined as follows: (λ)n
i=1 represents the eigenvalues

of a pentadiagonal matrix called A, (µ)n
i=1 represents the eigenvalues of a matrix denoted

as A∗, and (v)n
i=1 represents the eigenvalues of a matrix referred to as A∗∗. The matrix A∗

44



Heydari et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 43–59

is similar to A except for the element at position (1,1), and the matrix A∗∗ is similar to A∗

except for the element at position (2,2). Their algorithm involves computing the eigenvector
and implementing the Lanczos algorithm, resulting in a time complexity of O(n3).

In this paper, we investigate an inverse eigenvalue problem called IEPSP, which focuses
on constructing a matrix Pn with two pairs of eigenvalues from the required matrix and
one eigenvalue from each of its leading principal submatrices. The definition of IEPSP is as
follows:

IEPSP: Given a set

{λ1,λ2, · · · ,λn−1} ∪ {λ
(1)
n ,λ(2)

n } (2)

of real numbers and two vectors

x = [x1, · · · , xn]
T, (3)

and

y = [y1, · · · ,yn]
T (4)

with real entries, construct a symmetric pentadiagonal matrix Pn of size n× n such that Pnx =

λ
(1)
n x, Pny = λ

(2)
n y, and λi for i = 1,2, · · · ,n − 1 is an eigenvalue of the ith leading principal

submatrix of Pn. Inverse eigenvalue problems with non-negative spectra are an important
class of inverse eigenvalue problems aiming to construct matrices with non-negative entries
using spectral information. Chu and Golub [1] have introduced various types of problems in
this category. Recent studies in this area include Nazari et al. [16], who identified conditions
under which a set of positive numbers can be the eigenvalues of a symmetric matrix.

In this paper, we will also study non-negative IEPSP, which involves solving IEPSP in
such a way that the required matrix will have non-negative entries.

The structure of the paper is as follows: Section 2 provides preliminary definitions and
results. Section 3 presents the main results and the proposed algorithm. Section 4 includes
a numerical example for validating the proposed algorithm. Finally, Section 5 concludes the
paper.

2 Preliminary Investigation

In this section, we provide essential definitions and preliminary results. Throughout the
paper, we denote the jth leading principal submatrix of Pn as Pj, and its characteristic poly-
nomial as ϕj(λ) = det(λIj − Pj), where j = 1,2, · · · ,n. Additionally, we use σ(A) to represent
the eigenvalues of matrix A. The following lemma presents the recursive relation of ϕj(λ).
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Lemma 2.1. [11] The recursive relation of ϕj(λ) is given by

ϕj(λ) =

(
(λ − aj)−

rj−2

b2
j−2

)
ϕj−1(λ)

−
(

b2
j−1 −

(λ − aj−1)rj−2

b2
j−2

)
ϕj−2(λ)

−
(

c2
j−2(λ − aj−1)− rj−2

)
ϕj−3(λ)

+ c2
j−3

(
c2

j−2 −
(λ − aj−2)rj−2

b2
j−2

)
ϕj−4(λ)

+

(
c2

j−3c2
j−4rj−2

b2
j−2

)
ϕj−5(λ),

where ϕ−1(λ) = 0, ϕ0(λ) = 1, ϕ1(λ) = a1, ϕ2(λ) = (λ − a1)(λ − a2)− b2
1, and ri =−bibi+1ci, for

i = 1,2, · · · ,n − 2.

A symmetric tridiagonal matrix of order n is defined as follows:

Tn =



α1 β1 0 0 0 0 0 0 · · · 0
β1 α2 β2 0 0 0 0 0 · · · 0
0 β2 α3 β3 0 0 0 0 · · · 0
0 0 β3 α4 β4 0 0 0 · · · 0
0 0 0 β4 α5 β5 0 0 · · · 0

0 0 0 . . . . . . . . . . . . . . . . . . 0
0 0 0 0 0 βn−4 αn−3 βn−3 0 0
0 0 0 0 0 0 βn−3 αn−2 βn−2 0
0 0 0 0 0 0 0 βn−2 αn−1 βn−1

0 0 0 0 0 0 0 0 βn−1 αn



, (5)

where αi, βi ∈ R and βi ̸= 0. Let us denote the jth leading principal submatrix of Tn by Tj.
As it is stated in Lemma 2.2, it is well known that Tj and Tj+1, 1 ≤ j ≤ n − 1, do not have a
common eigenvalue.

Lemma 2.2. No two successive leading principal submatrices of a real symmetric tridiagonal matrix
share the same eigenvalue.

Considering Lemma 2.2 and the fact that any pentadiagonal matrix can be expressed as
the product of two tridiagonal matrices [12], Lemma 2.3 demonstrates that no two successive
leading principal submatrices of a specific class of pentadiagonal matrices share a common
eigenvalue.

Lemma 2.3. For any pentadiagonal matrix Pn that can be expressed as the square of a real symmetric
tridiagonal matrix, no two successive leading principal submatrices of Pn have a common eigenvalue.
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Proof. Let Tn be a real symmetric tridiagonal matrix such that T2
n = Pn. By considering the

equality det(λIn − Pn) = det(λIn − Tn)2, if there exists a number x such that det(xIi − Pi) =

det(xIi+1 − Pi+1) = 0, then we can immediately conclude det(xIi − Ti) = det(xIi+1 − Ti+1) =

0, which contradicts Lemma 2.2.

In the following section, the main results and the solution to the IEPSP are presented.

3 Solution to IEPSP

In this section, we focus on the main results. Lemma 3.2 demonstrates that in a pentadiag-
onal matrix, each component xi of an eigenvector x is a linear combination of the components
x1 and x2. To establish this relationship, we utilize two auxiliary matrices named Mi and Ni
of size (i − 2)× (i − 2), where i ≥ 3. The matrix Mi is constructed as follows:

1 Delete the second row and the (i − 1)th column from the matrix λIi − Pi.

2 Remove the last row and column from the resulting matrix in step 1.

For instance, the matrix M10 is given by

M10 =



λ − a1 −b1 −c1 0 0 0 0 0
−c1 −b2 λ − a3 −b3 −c3 0 0 0

0 −c2 −b3 λ − a4 −b4 −c4 0 0
0 0 −c3 −b4 λ − a5 −b5 −c5 0
0 0 0 −c4 −b5 λ − a6 −b6 −c6

0 0 0 0 −c5 −b6 λ − a7 −b7

0 0 0 0 0 −c6 −b7 λ − a8

0 0 0 0 0 0 −c7 −b8


.

The matrix Ni is constructed as follows:

1 Delete the first row and the (i − 1)th column from the matrix λIi − Pi.

2 Remove the last row and column from the resulting matrix in step 1.

For example, the matrix N10 is given by

N10 =



−b1 λ − a2 −b2 −c2 0 0 0 0
−c1 −b2 λ − a3 −b3 −c3 0 0 0

0 −c2 −b3 λ − a4 −b4 −c4 0 0
0 0 −c3 −b4 λ − a5 −b5 −c5 0
0 0 0 −c4 −b5 λ − a6 −b6 −c6

0 0 0 0 −c5 −b6 λ − a7 −b7

0 0 0 0 0 −c6 −b7 λ − a8

0 0 0 0 0 0 −c7 −b8


.
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The following lemma presents the recursive relation for determinant of the matrices Mi and
Ni.

Lemma 3.1. The recursive relation for the determinants of matrices Mi and Ni is given by:

det(Mi) = (λ − ai−2)ci−3 det(Mi−2)− c2
i−4ci−3ci−5 det(Mi−4)

− bi−3ci−3ci−4 det(Mi−3)− bi−2 det(Mi−1),

and

det(Ni) = (λ − ai−2)ci−3 det(Ni−2)− c2
i−4ci−3ci−5 det(Ni−4)

− bi−3ci−3ci−4 det(Ni−3)− bi−2 det(Ni−1).

Proof. The proof follows by expanding the determinants along the last row of matrices Mi
and Ni.

Let (λ, x) be an eigenpair of Pn. From the equation Pnx = λx, we can derive:

ci−2xi = (λ − ai−2)xi−2 − ci−4xi−4 − bi−3xi−3 − bi−2xi−1 for i = 3,4, · · · ,n, (6)

where bj = cj = xj = 0 for j ≤ 0. It is shown in the Lemma 3.2 that each component xi,i ≥ 3,
of the eigenvector x can be expressed as a linear combination of x1 and x2.

Lemma 3.2. If x = (x1, x2, · · · , xn)T and (λ, x) is an eigenpair of Pn, then |x1|+ |x2| > 0. Further-
more, one can obtain each component xj as follows:

xj =
det(Mj)x1 + det(Nj)x2

∏
j−2
i=1 ci

, j = 3,4, · · · ,n. (7)

Proof. The proof is done by induction on the xj’s. For the base case, i.e., x3, we have:

M3 = (λ − a1),

N3 = −b1,

and by equation (6), we have:

x3 =
(λ − a1)x1 − b1x2

c1
=

det(M3)x1 + det(N3)x2

c1
.

Now, assuming the induction holds for xj, j = 3,4, · · · , i− 1, we prove it for xi. Using equation
(6), we have:

ci−2xi =
λ − ai−2

∏i−4
j=1 cj

(det(Mi−2)x1 + det(Ni−2)x2)

− ci−4

∏i−6
j=1 cj

(det(Mi−4)x1 + det(Ni−4)x2)

− bi−3

∏i−5
j=1 cj

(det(Mi−3)x1 + det(Ni−3)x2)

− bi−2

∏i−3
j=1 cj

(det(Mi−1)x1 + det(Ni−1)x2).
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We rewrite it as follows:

ci−2xi =
λ − ai−2

∏i−4
j=1 cj

det(Mi−2)x1 +
λ − ai−2

∏i−4
j=1 cj

det(Ni−2)x2

− ci−4

∏i−6
j=1 cj

det(Mi−4)x1 −
ci−4

∏i−6
j=1 cj

det(Ni−4)x2

− bi−3

∏i−5
j=1 cj

det(Mi−3)x1 −
bi−3

∏i−5
j=1 cj

det(Ni−3)x2

− bi−2

∏i−3
j=1 cj

det(Mi−1)x1 −
bi−2

∏i−3
j=1 cj

det(Ni−1)x2.

(8)

Equation (8) yields:

xi =
(λ − ai−2)ci−3

∏i−2
j=1 cj

det(Mi−2)x1 +
(λ − ai−2)ci−3

∏i−2
j=1 cj

det(Ni−2)x2

−
c2

i−4ci−3ci−5

∏i−2
j=1 cj

det(Mi−4)x1 −
c2

i−4ci−3ci−5

∏i−2
j=1 cj

det(Ni−4)x2

− bi−3ci−3ci−4

∏i−2
j=1 cj

det(Mi−3)x1 −
bi−3ci−3ci−4

∏i−2
j=1 cj

det(Ni−3)x2

− bi−2

∏i−2
j=1 cj

det(Mi−1)x1 −
bi−2

∏i−2
j=1 cj

det(Ni−1)x2.

(9)

Based on the recursive relation of Mi and Ni in Lemma 3.1, it can be observed that (9) yields:

xi =
det(Mi)x1 + det(Ni)x2

∏i−2
j=1 cj

, i = 3,4, . . . ,n.

Now, if x1 = x2 = 0, then the eigenvector x will be zero, which contradicts the fact that x is
an eigenvector. Therefore, |x1|+ |x2| > 0, and the proof is complete.

In the following theorem, the solution to the IEPSP and the sufficient conditions for its
solvability are presented.

Theorem 3.3. Let {λ1, · · · ,λn−1,λ(1)
n ,λ(2)

n } be a set of numbers, and let x = (x1, x2, · · · , xn)T and
y = (y1,y2, · · · ,yn)T be vectors. The IEPSP has the following solution:

a1 = λ1, a2 =
b2

1
a1

, (10)
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ai =
1

ϕi−1(λi)

[(
λi −

ri−2

b2
i−2

)
ϕi−1(λi)

−
(

b2
i−1 −

(λi − ai−1)ri−2

b2
i−2

)
ϕi−2(λi)

−
(

c2
i−2(λi − ai−1)− ri−2

)
ϕi−3(λi)

+ c2
i−3

(
c2

i−2 −
(λi − ai−2)ri−2

b2
i−2

)
ϕi−4(λi)

+

(
c2

i−3c2
i−4ri−2

b2
i−2

)
ϕi−5(λi)

]
,

(11)

bi =

det

([
λ
(1)
n xi − ci−2xi−2 − bi−1xi−1 − aixi xi+2

λ
(2)
n yi − ci−2yi−2 − bi−1yi−1 − aiyi yi+2

])

det
([

xi+1 xi+2
yi+1 yi+2

]) , i = 1, · · · ,n − 2, (12)

ci =

det

([
xi+1 λ

(1)
n xi − ci−2xi−2 − bi−1xi−1 − aixi

yi+1 λ
(2)
n yi − ci−2yi−2 − bi−1yi−1 − aiyi

])

det
([

xi+1 xi+2
yi+1 yi+2

]) , i = 1, · · · ,n − 2, (13)

subject to the conditions:
λi ̸= λi+1, i = 1,2, · · · ,n − 1, (14)

xiyi+1 ̸= xi+1yi, i = 1,2, · · · ,n − 1, (15)

xi ̸= 0, yi ̸= 0, i = 1,2, · · · ,n, (16)

λi /∈ σ(Pi−1), (17)

λ1 ̸= 0.

Proof. We consider the set {λ1, · · · ,λn−1,λ(1)
n ,λ(2)

n } and the vectors x = (x1, x2, · · · , xn)T and
y = (y1,y2, · · · ,yn)T as the definitions (2), (3), and (4) of the IEPSP, respectively. Let the set
{λ1, · · · ,λn−1,λ(1)

n ,λ(2)
n } satisfy condition (14), and let the vectors x = (x1, x2, · · · , xn)T and

y = (y1,y2, · · · ,yn)T satisfy conditions (15) and (16). Now, we will prove the existence of
a pentadiagonal matrix Pn with the described properties. We know that λj ∈ σ(Pj), thus
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ϕ1(λ1) = 0 and ϕ2(λ2) = 0, which in turn imply a1 = λ1 and a2 =
b2

1
a1

. Again, by using

ϕj(λj) = 0 for j = 3,4, · · · ,n, we obtain the aj as given in (11). By condition (17), ϕj−1(λj)

is nonzero. Now, by solving the following system of equations, we can compute the values
of the unknowns bi, ci for i = 1,2, · · · ,n − 2:{

bixi+1 + cixi+2 = λ
(1)
n xi − ci−2xi−2 − bi−1xi−1 − aixi,

biyi+1 + ciyi+2 = λ
(2)
n yi − ci−2yi−2 − bi−1yi−1 − aiyi.

(18)

The system of equations (18) has a unique solution in terms of bi and ci if and only if condition
(15) holds, and the unique solution is given by equations (12) and (13). The element bn−1 is
also obtained using the following equation:

bn−1 =
(λ

(1)
n − an−1)xn−1 − bn−2xn−3 − cn−3xn−4

xn
. (19)

In the following, we will prove that the obtained bi and ci are nonzero to satisfy the conditions
of the matrix Pn. According to equation (7), we can express cj as follows:

cj−2 =
det(Mj)x1 + det(Nj)x2

xj ∏
j−3
i=1 ci

, j = 3,4, · · · ,n.

Now, if condition (16) holds, the cj’s will be nonzero. To prove the nonzeroness of bj, we first
define the expression:

χj(λ) =
(

b2
j−2(λ − aj)− rj−2

)
ϕj−1(λ)

−
(

b2
j−2b2

j−1 − (λ − aj−1)rj−2

)
ϕj−2(λ)

− b2
j−2

(
c2

j−2(λ − aj−1)− rj−2

)
ϕj−3(λ)

+ c2
j−3

(
b2

j−2c2
j−2 − (λ − aj−2)rj−2

)
ϕj−4(λ)

+
(

c2
j−3c2

j−4rj−2

)
ϕj−5(λ),

and rewrite recursive equation of ϕj(λ) as follows:

ϕj(λ) =
χj(λ)

b2
j−2

. (20)

According to (20), the zeros of ϕj(λ) and χj(λ) are the same. It was assumed in (17) that
ϕj(λj+1) ̸= 0, which implies χj(λj+1) ̸= 0. If bj−2 = 0, then ϕj(λ)b2

j−2 = χj(λ) for λ = λj+1
would lead to a contradiction, as the left side is zero while the right side is nonzero. There-
fore, bjs must be nonzero.
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Remark 3.4. Considering that equation (19) is obtained from the equation Pnx = λ
(1)
n x, its value can

also be computed based on the equation Pny = λ
(2)
n y. Therefore, the IEPSP problem has at most two

solutions.

In the following theorem, sufficient conditions for the non-negativity solvability of IEPSP
are provided.

Theorem 3.5. The IEPSP has a non-negative solution if the conditions of Theorem 3.3 are satisfied,
and additionally:

λ1 > 0, (21)

and (
(λ

(1)
n + λ

(2)
n − ai)L(xi,yi)− bi−1L(xi−1,yi−1)− ci−2L(xi−2,yi−2)

+ (λ
(2)
n yi+2xi − λ

(1)
n yixi+2)

)
L(xi+1,yi+1) ≥ 0, i = 1, · · · ,n − 1,

(22)

and (
(λ

(1)
n + λ

(2)
n − ai)H(xi,yi)− bi−1H(xi−1,yi−1)− ci−2H(xi−2,yi−2)

+ (λ
(2)
n yixi+2 − λ

(1)
n yi+2xi)

)
H(xi+2,yi+2) ≥ 0, i = 1, · · · ,n − 2,

(23)

where

L(xk,yk) = det
([

yk xk
yi+2 xi+2

])
, H(xk,yk) = det

([
xk yk

xi+1 yi+1

])
,

and

ϕi−1(λi)

[
det
([

1 λi − ai−1
ci−2 ri−2

])
ϕi−3(λi)b2

i−2

− det
([

1 λi − ai−1
ϕi−2(λi) ϕi−1(λi)

])
ri−2

+ det
([

λi b2
i−1

ϕi−2(λi) ϕi−1(λi)

])
b2

i−2

+ det
([

b2
i−2 λi − ai−2

ri−2 c2
i−2

])
ϕi−4(λi)c2

i−3

+ c2
i−3c2

i−4ri−2ϕi−5(λi)

]
> 0

(24)

Proof. Given that a1 = λ1, it is obvious that condition (21) must hold. Let’s assume that
condition (22) is satisfied. This condition can be expressed as follows:

((λ
(1)
n + λ

(2)
n − ai)L(xi,yi)− bi−1L(xi−1,yi−1)− ci−2L(xi−2,yi−2)

+ (λ
(2)
n yi+2xi − λ

(1)
n yixi+2))L(xi+1,yi+1)

= (ai(xi+2yi − xiyi+2) + bi−1(xi+2yi−1 − xi−1yi+2) + ci−2(xi+2yi−2 − xi−2yi+2)+

λ
(1)
n xiyi+2 − λ

(2)
n xi+2yi)L(xi+1,yi+1)

= det

([
λ
(1)
n xi − ci−2xi−2 − bi−1xi−1 − aixi xi+2

λ
(2)
n yi − ci−2yi−2 − bi−1yi−1 − aiyi yi+2

])
det
([

xi+1 xi+2
yi+1 yi+2

])
.
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Considering the equation (12), it is obvious that if the last expression holds, the values of bi
will be non-negative. Equation (23) implies the following result:

((λ
(1)
n + λ

(2)
n − ai)M(xi,yi)− bi−1M(xi−1,yi−1)− ci−2M(xi−2,yi−2)

+ (λ
(2)
n yixi+2 − λ

(1)
n yi+2xi))M(xi+2,yi+2)

= (ai(xiyi+1 − xi+1yi) + bi−1(xi−1yi+1 − xi+1yi−1) + ci−2(xi−2yi+1 − xi+1yi−2)

− λ
(1)
n xiyi+1 + λ

(2)
n xi+1yi)M(xi+2,yi+2)

= det

([
xi+1 λ

(1)
n xi − ci−2xi−2 − bi−1xi−1 − aix

yi+1 λ
(2)
n yi − ci−2yi−2 − bi−1yi−1 − aiyi

])
det
([

xi+1 xi+2
yi+1 yi+2

])
.

Considering the equation (13), it is evident that if the last expression holds, the values of ci
will be non-negative. The expression of (24) can also be written as follows:

(λjbj−2 − rj−2)ϕj−1(λj)

− (b2
j−1b2

j−2 − (λj − aj−1)rj−2)ϕj−2(λj)

− b2
j−2(c

2
j−2(λj − aj−1)− rj−2)ϕj−3(λj)

+ c2
j−3(c

2
j−2b2

j−2 − (λj − aj−2)rj−2)ϕj−4(λj)

+ c2
j−3c2

j−4rj−2ϕj−5(λj).

Based on equation (11), this expression is equal to

ϕ2
j−1(λj)b2

j−2aj. (25)

Since the terms ϕj−1(λj) and bj−2 appear squared in equation (25), it is evident that if the
expression (24) is non-negative, then aj for j ≥ 3 are also non-negative. Furthermore, since
a2 = b2

1/a1, if the above conditions hold, a2 is also non-negative, completing the proof.

Now, using Theorem 3.3, we obtain the following algorithm. The algorithm takes inputs
Λ = λ1, · · · ,λn−1,λ(1)

n ,λ(2)
n , x = x1, · · · , xn, and y = y1, · · · ,yn, and generates the elements of

Pn.
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Algorithm 1 IEPSP Algorithm

input Λ = {λ1, · · · ,λn−1,λ(1)
n ,λ(2)

n }, x = {x1, · · · , xn}, and y = {y1, · · · ,yn}
1: a1 = λ1, c−1 = c0 = b−1 = b0 = x−1 = x0 = y−1 = y0 = 0
2: For j = 1 to j = n − 2

3: bj =

det

([
λ
(1)
n xj − cj−2xj−2 − bj−1xj−1 − ajxj xj+2

λ
(2)
n yj − cj−2yj−2 − bj−1yj−1 − ajyj yj+2

])

det
([

xj+1 xj+2
yj+1 yj+2

])

4: cj =

det

([
xj+1 λ

(1)
n xj − cj−2xj−2 − bj−1xj−1 − ajxj

yj+1 λ
(2)
n yj − cj−2yj−2 − bj−1yj−1 − ajyj

])

det
([

xj+1 xj+2
yj+1 yj+2

])
5:

aj+1 =
1

ϕj(λj+1)

[(
λj+1 −

rj−1

b2
j−1

)
ϕj(λj+1)

−
(

b2
j −

(λj+1 − aj)rj−1

b2
j−1

)
ϕj−1(λj+1)

−
(

c2
j−1(λj+1 − aj)− rj−1

)
ϕj−2(λj+1)

+ c2
j−2

(
c2

j−1 −
(λj+1 − aj−1)rj−1

b2
j−1

)
ϕj−3(λj+1)

+

(
c2

j−2c2
j−3rj−1

b2
j−1

)
ϕj−4(λj+1)

]
.

6: Repeat

7: bn−1 =
(λ

(1)
n − an−1)xn−1 − bn−2xn−3 − cn−3xn−4

xn
8:

an =
1

ϕn−1(λ
(1)
n )

[(
λ
(1)
n − rn−2

b2
n−2

)
ϕn−1(λ

(1)
n )

−
(

b2
n−1 −

(λ
(1)
n − an−1)rn−2

b2
n−2

)
ϕn−2(λ

(1)
n )

−
(

c2
n−2(λ

(1)
n − an−1)− rn−2

)
ϕn−3(λ

(1)
n )

+ c2
n−3

(
c2

n−2 −
(λ

(1)
n − an−2)rn−2

b2
n−2

)
ϕn−4(λ

(1)
n )

+

(
c2

n−3c2
n−4rn−2

b2
n−2

)
ϕn−5(λ

(1)
n )

]
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Considering the computation of the determinant of a symmetric matrix in the algorithm,
its time complexity is given by

n−2

∑
i=1

O(i3) ≤
n

∑
i=1

O(n3) = O(n4).

4 Experimental Results

Example 4.1. The Algorithm 1 is utilized to construct a pentadiagonal matrix with the following
elements:

ai = 1 + e

√
i

10 ,

bi = sin(i)− i
10

,

ci =
sin(i)

i
.

The inputs to the algorithm consist of the eigenvalues:

λ1 = 2.371942, λ2 = 3.215605, λ3 = 1.932602, λ4 = 1.626050,

λ5 = 4.041036, λ6 = 1.875368, λ7 = 1.834516,

λ
(1)
8 = 0.880711, λ

(2)
8 = 1.639473,

and the eigenvectors:

x = {−0.04820,0.17503,−0.06880,−0.46205,−0.63351,−0.53618,−0.24449,−0.01383},

y = {0.83156,−0.38116,−0.38798,0.02416,−0.05747,−0.07996,−0.04881,−0.00322},

where x and y correspond to λ
(1)
8 and λ

(2)
8 , respectively. After executing the algorithm, the resulting

matrix P8 is as follows:

2.37194 0.74147 0.84147 0 0 0 0 0
0.74147 2.5639 0.70929 0.45464 0 0 0 0
0.84147 0.70929 2.7293 −0.1588 0.04704 0 0 0

0 0.45464 −0.15888 2.88223 −1.1568 −0.189201 0 0
0 0 0.04704 −1.1568 3.02811 −1.45892 −0.19178 0
0 0 0 −0.18920 −1.45892 3.16972 −0.87941 −0.04656
0 0 0 0 −0.19178 −0.87941 3.30864 −0.04301
0 0 0 0 0 −0.04656 −0.04301 3.44593


.

To validate the obtained matrix, we calculate its spectral information.
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σ1 = {2.3719422.3719422.371942},

σ2 = {1.720285,3.2156053.2156053.215605},

σ3 = {4.092001,1.640597,1.9326021.9326021.932602},

σ4 = {4.112669,3.045519,1.6260501.6260501.626050,1.763188},

σ5 = {4.222864,4.0410364.0410364.041036,1.498982,1.666840,2.145818},

σ6 = {4.839105,4.108931,3.256661,1.021721,1.643471,1.8753681.8753681.875368},

σ7 = {4.941708,4.119229,3.812395,0.881202,2.825357,1.639492,1.8345161.8345161.834516},

σ8 = {0.8807110.8807110.880711,1.6394731.6394731.639473,1.834331,4.941927,2.822326,4.119230,3.812971,3.448865}.

The following equality can be obtained easily:

P8x = (0.880711)x

P8y = (1.639473)y.

Example 4.2. In this example, we construct matrix P8 with the following eigenvalues:

λ1 = −17, λ2 = 16, λ3 = 18, λ4 = 2, λ5 = 13, λ6 = 14, λ7 = −10, λ
(1)
8 = 17, λ

(2)
8 = 13,

and eigenvectors:

x = {−4,4,1,8,−5,11,8,8},

y = {−3,−5,14,8,17,−3,18,−16},

After executing the algorithm, the resulting matrix P8 is as follows:



−17 −29.7377 −17.0492 0 0 0 0 0
−29.7377 −10.7979 −15.4187 0.9574 0 0 0 0
−17.0492 −15.4187 9.4485 −2.1312 −3.6159 0 0 0

0 0.9574 −2.1312 2.3435 9.6819 14.9057 0 0
0 0 −3.6159 9.6819 9.5975 −10.1054 0.03846 0
0 0 0 14.9057 −10.1054 −3.5097 3.3730 3.6061
0 0 0 0 0.03846 3.3730 −10.2317 −26.7272
0 0 0 0 0 3.6061 −26.7272 −9.2532


.

56



Heydari et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 43–59

To validate the obtained matrix, we calculate its spectral information.

σ1 = {−17−17−17},

σ2 = {−43.7979,161616},

σ3 = {−51.3471,15.9992,181818},

σ4 = {−51.3497,16.0268,18.3163,222},

σ5 = {−51.4943,−4.3782,21.3144,16.0298,131313},

σ6 = {−52.1232,−21.95079,21.3149,16.1038,12.9895,141414},

σ7 = {−53.7421,−22.4184,−10−10−10,21.3146,16.1128,12.9911,14.2273},

σ8 = {−52.3756,−37.4838,−21.1869,21.3150,131313,14.2250,16.1123,171717}.

5 Conclusion

In this paper, the inverse eigenvalue problem of pentadiagonal matrices is addressed by
utilizing two pairs of eigenvalues from the required matrix and one eigenvalue from each
of its leading principal submatrices. The sufficient conditions for the solvability of the prob-
lem are established, and a numerical algorithm for constructing the matrix is obtained. The
problem is also studied for the case where the elements of the constructed matrix are non-
negative.

The obtained solution is based on a linear combination relationship among the elements
of the eigenvectors of the pentadiagonal matrix, derived in Lemma 3.2. Finally, several nu-
merical examples are presented to validate the results.
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