[1] F. Mohammadi, Haar wavelets approach for solving multidimensional stochastic Ito-Volterra integral equations, Applied Mathematics E-Notes 15 (2015) 80-96.https://www.math.nthu.edu.tw/
amen/2015/AMEN(140902).pdf
[2] Z.H. Jiang, W. Schaufelberger, Block pulse functions and their applications in control systems,
Springer-Verlag, 1992.https://doi.org/10.1007/bfb0009162
[3] W. Rudin, Principles of mathematical analysis, McGraw-Hill Publishing Company Ltd., 1976.
https://doi.org/10.1017/s002555720005333x
[4] F. Keinert, Wavelets and Multiwavelets, A Crc Press Company, Boca Raton, London, New York,
Washington DC, 2004. https://doi.org/10.1201/9780203011591
[5] K. Maleknejad, Z. Jafari-Behbahani, Application of two-dimensional triangular functions for solving nonlinear class of mixed Volterra-Fredholm integral equations, Math. Comp. Mode. 55 (2012)
1833-1844. https://doi.org/10.1016/j.mcm.2011.11.041
[6] E. Babolian, K. Maleknejad, M. Roodaki, H. Almasieh, Two dimensional triangular functions and
their applications to nonlinear 2d Volterra-Fredholm equations, Comp. Math. App. 60 (2012) 1711-
1722. https://doi.org/10.1016/j.camwa.2010.07.002
[7] F. Hosseini Shekarabi, K. Maleknejad, R. Ezzati, Application of two-dimensional Bernstein polynomials for solving mixed Volterra-Fredholm integral equations, African Mathematical Union and
Springer-Verlag Berlin Heidelberg, 2014. https://doi.org/10.1007/s13370-014-0283-6
[8] D. Darshana, B. Jayanta, On the solution of nonlinear nonlocal Volterra-Fredholm type hybrid
fractional differential equation, Indian Journal of Pure and Applied Mathematics (2023) 1–12.
https://doi.org/10.1007/s13226-023-00462-7
[9] A. R. Yaghoobnia, R. Ezzati, Numerical solution of Volterra–Fredholm integral equation systems
by operational matrices of integration based on Bernstein multi-scaling polynomials, Comp. and
Appl. Math. 41 (2022) 324. https://doi.org/10.1007/s40314-022-02036-5
[10] K. Parand, H. Yari, M. Delkhosh, Solving two-dimensional integral equations of the second kind
on non-rectangular domains with error estimate, Engineering with Computers 36 (2020) 725–739.
https://doi.org/10.1007/s00366-019-00727-y
[11] P. Assari, M. Dehghan, The approximate solution of nonlinear Volterra integral equations
of the second kind using radial basis functions, Appl. Numer. Math. 131 (2018) 140–157.
https://doi.org/10.1016/j.apnum.2018.05.001
[12] W. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, App. Num. Math. 59 (2009) 1709-1719.
https://doi.org/10.1016/j.apnum.2009.01.009
[13] S. Bazm, E. Babolian, Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules, Commun. Nonlinear Sci. Numer.
Simult. 17 (2012) 1215–1223. https://doi.org/10.1016/j.cnsns.2011.08.017
[14] S. Nemati, P. Lima, Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear
Volterra integral equations using legender polynomials, J. Comp. Appl. Math. 242 (2013) 53–69.
https://doi.org/10.1016/j.cam.2012.10.021
[15] A. Tari, M. Rahimi, S. Shahmorad, F. Talati, Solving a class of two-dimensional linear and nonlinear
Volterra integral equations by the differential transform method, J. Comp. Appl. Math. 228 (2009)
70–76. https://doi.org/10.1016/j.cam.2008.08.038
[16] P. Assari, H. Adibi, M. Dehghal, A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with
error analysis, J. Comp. Appl. Math. 239 (2013) 72–92. https://doi.org/10.1016/j.cam.2012.09.010
[17] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions, Cog. Math. 4 (2017) 1296750.
https://doi.org/10.1080/23311835.2017.1296750
[18] M. Fallahpour, M. Khodabin, K. Maleknejad, Theoretical error analysis of solution for twodimensional stochastic Volterra integral equations by Haar wavelet, Int. J. Appl. Comput. Math
(2019) 1–13. https://doi.org/10.1007/s40819-019-0739-3