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Abstract. In this paper, we combine the two-dimensional (2D) Haar wavelet functions (HWFs)
with the block-pulse functions (BPFs) to solve the 2D linear Volterra-Fredholm integral equations (2D-
L(VF)IE). This approach presents a new hybrid computational effcient method based on the 2D-HWFs
and 2D-BPFs to approximate the solution of the 2D linear Volterra-Fredholm integral equations. In
fact, the HWFs and their relations to the BPFs are employed to derive a general procedure to form op-
erational matrix of Haar wavelets. Theoretical error analysis of the proposed method is done. Finally
some examples are presented to show the effectiveness of the proposed method.
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1 Introduction

As we know, the 2D-L(VF)IEs appear in various fields of scienc and engineering, such as
heat conduction, concrete mechanics, electroelastics, contact phisics and plasma physics. To
solve these equations, we encounter computational intricacies. We can see some numerical
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methods for solving such equations in [5–18]. In this work we consider the equation

g(x,y) = f (x,y) +
ˆ 1

0

ˆ 1

0
c1(x,y, s, t)g(s, t)dsdt (1)

+

ˆ y

0

ˆ x

0
c2(x,y, s, t)g(s, t)dsdt,

where (x,y) ∈ [0,1]2. Also f and the kernels c1, c2 in Eq. (1) are the known functions and g
is the unknown function such that the functions f and g are defined in the space L2[0,1] and
the functions c1 and c2 are defined in the space L4[0,1].

In this work, we use the presented method of [1] to obtain the numerical solution of Eq.
(1) based on the HWFs and their relations to the BPFs.

The structure of this paper is as follows: In Section 2, we present some basic properties
about 2D-BPFs and 2D-HWFs. Also, we introduce a general procedure for deriving the oper-
ational matrix of Haar wavelets by using relations between the HWFs and BPFs. In Section
3, we apply this operational matrices for solving the 2D-L(VF)IE in Eq. (1). In Section 4, the
theorems are provided for the convergence analysis. In Section 5, we apply the proposed
method in some numerical examples. Finally, a conclusion is given in Section 6.

2 Preliminaries

In this section, we examine some basic concepts about HWFs and BPFs and their relation-
ships with each other.

2.1 Block-pulse functions

An n-set of the BPFs ba(x) are as [2]

ba(x) =
{

1 (a − 1)k ≤ x < ak
0 otherwise

where x ∈ [0, T), a = 1,2, . . . ,n and k =
T
n

.

We can write every square integrable function f (x) as

f (x) ≃
n

∑
a=1

faba(x), (2)

where bi(x) are the entries of the BPFs vector B(x) = [b1(x),b2(x), ...,bn(x)]T, and for a =

1,2, ...,n

fa =
1
k

ˆ T

0
ba(x) f (x)dx.

From Eq. (2) we have
f (x) ≃ FTB(x) = BT(x)F,
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in which F = [ f1, f2, ..., fn]T. Moreover, for every 2D function c(x,y) ∈ L2([0, T1)× [0, T2)) we
have

c(x,y) = CTB(x,y) = BT(x)CB(y),

where here Cn×n is the BPFs coefficient matrix with

cij =
1

k1k2

ˆ T1

0

ˆ T2

0
c(x,y)bi(x)bj(y)dxdy,

for i, j = 1,2, ...,n, where k1 =
T1

n
, k2 =

T2

n
and B(x,y) is the block-pulse vector defined by

B = [b1,1,b1,2, ...,bn,n]
T. (3)

We have ˆ x

0
B(s)ds ≃ PB(x),

where Pn×n is

P =
k
2


1 2 2 ... 2
0 1 2 ... 2
0 0 1 ... 2
...

...
... . . . ...

0 0 0 ... 1

 , (4)

and the integral of vector B(x) is obtained as

ˆ 1

0
B(s)ds ≃ D,

where Dn×n is

D =


k 0 ... 0
0 k ... 0
...

... . . . ...
0 0 ... k

 . (5)

2.2 Haar wavelets

We know that the mathematical formula of HWFs (ψj,k (y))j∈N,k∈Z, is as [4]

ψj,k (y) = 2j/2h
(

2jy − k
)

, j ≥ 0 , 0 ≤ k < 2j , j,k ∈ Z,

such that for hi(y) in the support [
k
2j ,

k + 1
2j ), on [0,1), we have some important properties

h1(y) =
{

1, f or y∈ [0,1)
0, otherwise
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hi(y) =


1 f or y∈ [αi, βi)

−1, f or y∈ [βi,γi)

0, otherwise, i = 2,3, ...

αi =
i
n

, βi =
(i + 0.5)

n
, γi =

(i + 1)
n

;

n = 2ℓ, ℓ = 0,1, ..., i = 0,1, ...,n − 1.

So for the integrable function f (x) we have

f (x) ≃ f1h1(x) +
n−1

∑
i=1

fihi(x), i = 2j + k, j = 0,1, ..., J − 1, 0 ≤ k < 2j. (6)

From Eq. (6) we can get
f ≃ FT H = HTF,

where
F = [ f1, f2, ..., fn]

T,

H = [h1, h2, ..., hn]
T. (7)

Also, any 2D function c(x,y) can be expanded with respect to the HWFs as

c(x,y) = CT H(x,y) = HT(x,y)C = HT(x)CH(y),

where C is the n2 × n2 Haar wavelet with

cij =

ˆ 1

0

ˆ 1

0
c(x,y)hi(x)hj(y)dxdy, i, j = 1,2, ...,n,

and H(x,y) is the wavelet vector as

H = [h1,1, h1,2, ..., hn,n]
T. (8)

2.3 Relations between BPFs and HWFs

We set T = 1 defined in Section 2.1. If we consider H(x) and B(x) as the n-dimensional
HWFs and BPFs vectors, respectively, we have from [1] that

H(x) = QB(x), (9)

with
Qn×n = [Qij]n×n = 2(j\2)hi−1(

2j − 1
2n

), (10)
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for n = 2J , i, j = 1,2, ...,n, i − 1 = 2j + k and 0 ≤ k < 2j. Here we desire a formula similar to Eq.
(9) in the 2D case. To do this, by using the 2D-BPFs, 2D-HWFs and Eq. (9) we can obtain

H(x,y) = RB(x,y), (11)

where
Rn2×n2 = Qn×n ⊗ Q′

n×n, (12)

and ⊗ denotes the Kronecker product. Now we have

H(x)HT(x)F = F̃H(x),

where
F̃n×n = QF̄Q−1, (13)

and
F̄ = diag(QTF).

Similarly we can write
H(x,y)HT(x,y)En×n = ẼH(x,y), (14)

where
Ẽn2×n2 = F̃n×n ⊗ F̃′

n×n.

Also for the arbitrary matrix M we have

HT(x)MH(x) = M̂T H(x),

where M̂ = UQ−1 and U = diag(QT MQ) is an n−vector. Similarly for an arbitrary n2 × n2

matrix we obtain
HT(x,y)LH(x,y) = L̂T H(x,y), (15)

where
L̂ = SR−1,

and S = diag(RT LR) is a (n × n)−vector and R is introduced in Eq. (12).

2.4 Operational matrix of HWFs

In this subsection, we obtain the integration operational matrix for the HWFs. Suppose
H(x) is the HWFs vector defined in Eq. (7). The integral of this vector can be derived as [1]

ˆ x

0
H(s)ds ≃ 1

n
QPQT H(x) = ΛH(x). (16)

where Q is introduced in Eq. (10) and P is the operational matrix of integration for the BPFs
derived in Eq. (4). The following remarks are the consequence of the HWFs and the BPFs
properties.
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Remark 2.1. Suppose H(x,y) is the HWFs vector defined in Eq. (8). Then

ˆ 1

0

ˆ 1

0
HT(s, t)H(s, t)dsdt ≃ RORT = A1,

where On2×n2 is as D ⊗ D in which D is the operational matrix of integration for the BPFs derived in
Eq. (5).

Remark 2.2. For the 2D-Volterra integral of vector H(x,y) we have
ˆ y

0

ˆ x

0
H(s, t)dsdt ≃ (Λ ⊗ Λ)n2×n2 H(x,y) = A2H(x,y),

where Λ is derived from Eq. (16).

3 Solving 2D-L(VF)IE

In this section, we approximate g, f , c1 and c2 in terms of the HWFs as

g(x,y) = GT H(x,y), (17)

f (x,y) = FT H(x,y), (18)

c1(x,y, s, t) = CT
1 H(x,y, s, t) = HT(x,y)C1H(s, t), (19)

and
c2(x,y, s, t) = CT

2 H(x,y, s, t) = HT(x,y)C2H(s, t), (20)

where G, F, C1 and C2 are the HWFs coefficients of g, f , c1 and c2, respectively, and H is
defined in Eq. (8). In Eq. (18), F is the (n1n2 × 1) known vector, also in Eqs. (19) and (20), C1

and C2 are the (n1n2)× (n1n2) known matrices but in Eq. (17), G is the (n1n2 × 1) unknown
vector.
By using Eqs. (17), (19) and Remark 2.1 we get

ˆ 1

0

ˆ 1

0
c1(x,y, s, t)g(s, t)dsdt =

ˆ 1

0

ˆ 1

0
HT(x,y)C1H(s, t)HT(s, t)Gdsdt

= HT(x,y)C1

(ˆ 1

0

ˆ 1

0
H(s, t)HT(s, t)dsdt

)
G

= HT(x,y)C1A1G = (C1A1G)T H(x,y) = ĜT
F H(x,y),

where ĜT
F is an (n2 × n2)-vector obtained as C1A1G. So we have

ˆ 1

0

ˆ 1

0
c1(x,y, s, t)g(s, t)dsdt ≃ ĜT

F H(x,y). (21)
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Also by Eqs. (14), (17) and (20), we get
ˆ y

0

ˆ x

0
c2(x,y, s, t)g(s, t)dsdt ≃

ˆ y

0

ˆ x

0
HT(x,y)C2H(s, t)HT(s, t)Gdsdt

= HT(x,y)C2

(ˆ y

0

ˆ x

0
H(s, t)HT(s, t)Gdsdt

)
= HT(x,y)C2

(ˆ y

0

ˆ x

0
G̃H(s, t)dsdt

)
= HT(x,y)C2G̃

(ˆ y

0

ˆ x

0
H(s, t)dsdt

)
.

Now, from Remark 2.2, we haveˆ y

0

ˆ x

0
c2(x,y, s, t)g(s, t)dsdt ≃ HT(x,y)C2G̃A2H(x,y),

in which C2G̃A2 is an (n1n2)× (n1n2) matrix. So we conclude that
ˆ y

0

ˆ x

0
c2(x,y, s, t)g(s, t)dsdt ≃ ĜT

V H(x,y), (22)

where ĜT
V is an (n1n2)-vector.

Applying Eqs. (17), (18), (21) and (22) in Eq. (1), we get

FT H + ĜT
F H + ĜT

V H. (23)

Replacing ≃ with =, Eq. (23) gives

G − ĜF − ĜV = F. (24)

Equation (24) generates a system of the (n1n2) linear equations with the (n1n2) unknown
variable. Clearly, we can solve Eq. (24) using either direct methods or iterative methods, the
latter of which may include Newton’s method.

4 Convergence analysis

In this section, we investigate the convergence of the current method for solving Eq. (1).
At first, we consider the 2−norms defined in this paper as:
If f ∈ C[a,b], g ∈ C([a1,b1]× [a2,b2]) and c ∈ C([a1,b1]× [a2,b2]× ([a3,b3]× [a4,b4]), we can
define a 2−norm by

∥ f ∥ = ∥ f ∥2 =

[ˆ b

a
| f (x)|2dx

]1
2

,

∥g∥ = ∥g∥2 =

[ˆ b1

a1

ˆ b2

a2

|g(x,y)|2dxdy

]1
2
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and

∥c∥ = ∥c∥2 =

[ˆ b1

a1

ˆ b2

a2

ˆ b3

a3

ˆ b4

a4

|c(x,y, s, t)|2dxdydsdt

]1
2

.

Also we know that for a differentiable function u with a bounded derivative, there is a real
number M such that [3]

|u(s)− u(t)| ≤ M|s − t|. (25)

Theorem 4.1. For function c ∈ L4([0,1)) with

| ∂4c
∂x∂y∂s∂t

| ≤ V,

where V is the upper bound for the fourth-order derivative of function c(x,y, s, t) and the 4D Haar
wavelet expansion of c as

ĉn(x,y, s, t) =
n−1

∑
p=0

n−1

∑
q=0

n−1

∑
r=0

n−1

∑
l=0

cpqrlhp(x)hq(y)hr(s)hl(t),

the reperesentation error between c and ĉn is as

∥ep,q,r,l∥ ≤
V

9n4 ,

where
ep,q,r,l = c − ĉn.

Proof. By the error definition we can write

∥ep,q,r,l∥2 =

ˆ 1

0

ˆ 1

0

ˆ 1

0

ˆ 1

0

(
c(x,y, s, t)−

n−1

∑
p=0

n−1

∑
q=0

n−1

∑
r=0

n−1

∑
l=0

cpqrlhp(x)hq(y)hr(s)hl(t)

)2

dtdsdydx

=

ˆ 1

0

ˆ 1

0

ˆ 1

0

ˆ 1

0

(
∞

∑
p=n

∞

∑
q=n

∞

∑
r=n

∞

∑
l=n

cpqrlhp(x)hq(y)hr(s)hl(t)

)2

dtdsdydx

=
∞

∑
p=n

∞

∑
q=n

∞

∑
r=n

∞

∑
l=n

c2
pqrl, (26)

where p = 2j1 + k, q = 2j2 + k, r = 2j3 + k, l = 2j4 + k, n = 2J , J > 0 and

cpqrl =

ˆ 1

0

ˆ 1

0

ˆ 1

0

ˆ 1

0
hp(x)hq(y)hr(s)hl(t)c(x,y, s, t)dtdsdydx.

Based on the HWFs definition, mean value theorem, Eq. (25) and [1, Theorem 5], there are
ηj4 ,α,α′,ηj3 , β, β′,ηj2 ,γ,γ′,ηj1 ,θ,θ′, that

α,α′ ∈ [k2−j4 , (k +
1
2
)2−j4 ] , β, β′ ∈ [k2−j3 , (k +

1
2
)2−j3 ],
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γ,γ′ ∈ [k2−j2 , (k +
1
2
)2−j2 ] , θ,θ′ ∈ [k2−j1 , (k +

1
2
)2−j1 ],

such that

cpqrl =

ˆ 1

0

ˆ 1

0

ˆ 1

0
hp(x)hq(y)hr(s)×

(ˆ 1

0
hl(t)c(x,y, s, t)dt

)
dsdydx

=

ˆ 1

0

ˆ 1

0

ˆ 1

0
hp(x)hq(y)hr(s)×

2
(
−j4

2
−1)

(α − α′)
∂c(x,y, s,ηj4)

∂t

dsdydx

=

ˆ 1

0

ˆ 1

0
hp(x)hq(y)× 2

(−j4
2

−1

)
(α − α′)×

(ˆ 1

0
hr(s)

∂c(x,y, s,ηj4)

∂t
ds

)
dydx

=

ˆ 1

0

ˆ 1

0
2

(−j4
2

−
−j3

2
−2

)
× (α − α′)× (β − β′)

∂2c(x,y,ηj3 ,ηj4)

∂s∂t
hp(x)hq(y)dydx.

Similarly we get

cpqrl = 2
(
−j4

2
−
−j3

2
−
−j2

2
−
−j1

2
−4)

× (α − α′)(β − β′)× (γ − γ′)(θ − θ′)
∂4c(ηj1 ,ηj2 ,ηj3 ,ηj4)

∂x∂y∂s∂t
.

Also from Eq. (26) we have

∥ep,q,r,l∥2 =
∞

∑
p=n

∞

∑
q=n

∞

∑
r=n

∞

∑
l=n

2(−j4−j3−j2−j1−8)

× (α − α′)2(β − β′)2(γ − γ′)2(θ − θ′)2

∣∣∣∣∣∂4K(ηj1 ,ηj2 ,ηj3 ,ηj4)

∂x∂y∂s∂t

∣∣∣∣∣
2

≤
∞

∑
p=n

∞

∑
q=n

∞

∑
r=n

∞

∑
l=n

2(−j4−j3−j2−j1−8) × 2−2j1 × 2−2j2 × 2−2j3 × 2−2j4 × V2

=
∞

∑
p=n

∞

∑
q=n

∞

∑
r=n

∞

∑
l=n

2(−3j4−3j3−3j2−3j1−8) × V2

= V2
∞

∑
p=n

∞

∑
q=n

2(−3j2−3j1−4)
∞

∑
r=n

∞

∑
l=n

2(−3j4−3j3−4),

therefore we can derive

∥ep,q,r,l∥2 ≤ V2 × 1
9n4 × 1

9n4 =
V2

81n8 .

In other words
∥ep,q,r,l∥ ≤

V
9n4 .
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Theorem 4.2. If g(s, t) and ĝn(s, t) are the exact and approximate solutions of Eq. (1) respectively,
that are obtained by Eq. (24) with

1. ∥g∥ ≤ Υ,

2. ∥ci∥ ≤ Wi, i = 1,2,

3. | ∂4ci

∂x∂y∂s∂t
| ≤ Vi, i = 1,2,

4.
(

W1 + W2 +
V1 + V2

9n4

)
< 1,

then

∥g − ĝn∥ ≤

M
3n2 +

V1Υ
9n4 +

V2Υ
9n4

1 −
[

W1 + W2 +
V1 + V2

9n4

] .

Proof. From Eq. (1), we get

g(x,y)− ĝn(x,y) = f (x,y)− f̂n(x,y)

+

ˆ 1

0

ˆ 1

0
(c1(x,y, s, t)g(s, t)− ĉ1,n(x,y, s, t)ĝn(s, t))dsdt

+

ˆ y

0

ˆ x

0
(c2(x,y, s, t)g(s, t)− ĉ2,n(x,y, s, t)ĝn(s, t))dsdt,

then by mean value theorem for the 2D integrals we have

∥g − ĝn∥ ≤ ∥ f − f̂n∥+ ∥c1g − ĉ1,n ĝn∥+ xy∥c2g − ĉ2,n ĝn∥. (27)

From the first two conditions, Eq. (25) and Theorem 4.1 we have

∥c1g − ĉ1,n ĝn∥ ≤ ∥c1∥∥g − ĝn∥+ ∥c1 − ĉ1,n∥ (∥g − ĝn∥+ ∥g∥)

≤ W1∥g − ĝn∥+
V1

9n4 (∥g − ĝn∥+ Υ)

=

(
W1 +

V1

9n4

)
∥g(s, t)− ĝn(s, t)∥+ V1

9n4 Υ. (28)

Similarly we have

∥c2g − ĉ2,n ĝn∥ ≤ ∥c2∥∥g − ĝn∥+ ∥c2 − ĉ2,n∥ (∥g − ĝn∥+ ∥g∥)

=

(
W2 +

V2

9n4

)
∥g(s, t)− ĝn(s, t)∥+ V2

9n4 Υ. (29)

By substituting Eqs. (28) and (29) in Eq. (27) and using [1, Theorem 5] we can write

∥g − ĝn∥ ≤
M

3n2 +

[(
W1 +

V1

9n4

)
∥g − ĝn∥+

V1

9n4 Υ
]

+ xy
[(

W2 +
V2

9n4

)
∥g − ĝn∥+

V2

9n4 Υ
]

.
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By taking sup we have

∥g − ĝn∥ ≤
M

3n2 +

[(
W1 +

V1

9n4

)
sup

s≤x , t≤y
∥g − ĝn∥+

V1

9n4 Υ

]

+ sup
x∈[0,1)

x × sup
y∈[0,1)

y

[(
W2 +

V2

9n4

)
sup

s≤x , t≤y
∥g − ĝn∥+

V2

9n4 Υ

]
,

so

∥g − ĝn∥ ≤

M
3n2 +

V1Υ
9n4 +

V2Υ
9n4

1 −
[

W1 + W2 +
V1 + V2

9n4

] .

Therefore using Hypothesis 4 we have

∥g − ĝn∥ = O(
1
n2 ).

5 Numerical Examples

In this section, for the applicability of the proposed method, three numerical examples are
given.

Example 5.1. We consider

g(x,y) = x + y − Sin(x) +
Cos(y)

2
(x2y + xy2) +

ˆ 1

0

ˆ 1

0
Sin(x)g(s, t)dsdt

−
ˆ y

0

ˆ x

0
Cos(y)g(s, t)dsdt

with the exact solution

g(x,y) = x + y.

In Table 1 the absolute error (e(x,y)) and the minimum absolute error (emin) for the arbitrary points
are computed for the present method in the different values of J. According to Table 1, by applying the
present method when J increases, e(x,y) and emin decrease. You can see the 3D graphs of this example
for J = 1 in Fig. 1. Also in Table 2, the comparison of the computed results by the present method and
the HWFs [18] and the BPFs [17] methods for Example 5.1 are shown. We see that the error in this
method, compared to other methods is smaller.
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J e(0,0.21) e(0.12,0.32) e(0.11,0.76) e(0.51,0.51) e(0.79,0.81) emin

1 0.01948 0.05123 0.02350 0.68015 0.89125 0.0020
2 0.02031 0.06114 0.01551 0.68012 0.75049 0.0016
3 0.08949 0.01564 0.08159 0.68210 0.65020 0.0081
4 0.03636 0.09808 0.04660 0.54114 0.57585 0.0050
5 0.03802 0.09800 0.04528 0.12216 0.46025 0.0047
6 0.02996 0.08407 0.04480 0.10525 0.40755 0.0045

Table 1. e(x,y) and emin of Example 1 for some valus of J.

(x,y) J Method ē
(0,0.21) 2 HWFs 0.154601

BPFs 0.012645
Current 0.020311

(0.11,0.76) HWFs 0.016133
BPFs 0.016701

Current 0.015519
(0,0.21) 4 HWFs 0.036412

BPFs 0.036210
Current 0.036367

(0.11,0.76) HWFs 0.170048
BPFs 0.045522

Current 0.046601

Table 2. Comparison of numerical results of current method with other methods in J = 2,4 for
Example 5.1.
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Figure 1. Exact and approximate solutions (J = 1) for Example 5.1.

Example 5.2. We consider

g(x,y) = Sin(x) + xy(Cos(1) + 1) + y(Cos(1)− 1) +
ˆ 1

0

ˆ 1

0
yg(s, t)dsdt

−
ˆ y

0

ˆ x

0
xg(s, t)dsdt,

with the exact solution

g(x,y) = Sin(x).

In Table 2, e(x,y) and emin for the arbitrary points are computed for the present method in the different
values of J. According to Table 2, by applying this method when J increases, e(x,y) and emin decrease.
You can see the 3D graphs of this example for J = 3 in Fig. 2. Also in Table 4, the comparison of the
computed results by the present method and the HWFs [18] and the BPFs [17] methods for Example
5.2 are shown. We see that the error in this method, compared to other methods is smaller.
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J e(0,0.24) e(0.15,0.36) e(0.17,0.71) e(0.51,0.51) e(0.81,0.92) emin

1 0.10264 0.09112 0.04122 0.66510 0.91234 0.0065
2 0.08555 0.08414 0.09691 0.66415 0.90512 0.0265
3 0.04040 0.02390 0.03413 0.61234 0.89154 0.0018
4 0.05125 0.02664 0.05773 0.58162 0.76100 0.0044
5 0.05107 0.02614 0.05287 0.48540 0.65852 0.0041
6 0.05101 0.02097 0.04771 0.23016 0.42191 0.0035

Table 3. e(x,y) and emin of Example 2 for some valus of J.

(x,y) J Method ē
(0,0.24) 2 HWFs 0.092314

BPFs 0.089919
Current 0.085557

(0.17,0.71) HWFs 0.105588
BPFs 0.096901

Current 0.096911
(0,0.24) 4 HWFs 0.080441

BPFs 0.071561
Current 0.051252

(0.17,0.71) HWFs 0.601480
BPFs 0.060133

Current 0.057737

Table 4. Comparison of numerical results of current method with other methods in J = 2,4 for
Example 5.2.
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Figure 2. Exact and approximate solution (J = 3) for Example 5.2.

Example 5.3. We consider

g(x,y) = cos(x2 + y2)− 0.124√
x2 + y2 + 1

− xlog(y + 1)
4

[
1 − Cos(x2)− Cos(y2)

+ (1 − x2y2)cos(x2 + y2)− x2sin(x2)− y2sin(y2) + (x2 + y2)sin(x2 + y2)
]

+

ˆ 1

0

ˆ 1

0

st√
x2 + y2 + 1

g(s, t)dsdt −
ˆ y

0

ˆ x

0
xLog(y + 1)s3t3g(s, t)dsdt,

with the exact solution

g(x,y) = Cos(x2 + y2).

In Table 5, e(x,y) and emin for the arbitrary points are computed for the present method in the different
values of J. According to Table 5, by applying this method when J increases, e(x,y) and emin decrease.
You can see the 3D graphs of this example for J = 3 in Fig.3. Also in Table 6, the comparison of the
computed results by the present method and the HWFs [18] and the BPFs [17] methods for Example
5.3 are shown. We see that the error in this method, compared to other methods is smaller.
In all three examples presnted in this article according to Tables 1, 3 and 5, we see that the rate of
convergence increases when J increases.
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J e(0,0.32) e(0.32,0.45) e(0.51,0.51) e(0.51,0.51) e(0.81,0.92) emin

1 0.10481 0.13153 0.20872 0.34104 0.78015 0.04495
2 0.10057 0.13083 0.20522 0.31743 0.74472 0.03579
3 0.08376 0.08151 0.12044 0.28807 0.62240 0.00854
4 0.00266 0.01827 0.10550 0.25381 0.51860 0.00029
5 0.00034 0.01124 0.04517 0.15041 0.42011 0.00017
6 0.00001 0.00265 0.03661 0.15008 0.26433 0.00000

Table 5. e(x,y) and emin of Example 3 for some valus of J.

(x,y) J Method ē
(0,0.32) 2 HWFs 0.122541

BPFs 0.115611
Current 0.104812

(0.26,0.83) HWFs 0.314056
BPFs 0.305142

Current 0.322571
(0,0.32) 4 HWFs 0.020474

BPFs 0.015991
Current 0.00266

(0.26,0.83) HWFs 0.103466
BPFs 0.098497

Current 0.167343

Table 6. Comparison of numerical results of current method with other methods in J = 2,4 for
Example 5.3.
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Figure 3. Exact and approximate solution (J = 3) for Example 5.3

6 Conclusion

In this paper, using the HWFs and their relations to the BPFs, a new computational
method is proposed to approximate a solution of Eq. (1). The convergence analysis and
the examples confirm that the method is highly accurate and sometimes leads to the exact
solution. While increasing the value of J theoretically improves the accuracy of the method,
it results in larger linear systems of size m2xm2. Solving these systems can be computation-
ally expensive, especially for large values of m2. Finally, this method can be improved to be
more accurate by using other numerical methods such as the hybrid Hat functions and the
BPFs. Mathematica has been used for computations in this paper.
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