[1] M. Akbari, M. Rabii, Real cubic polynomials with a fixed point of multiplicity two, Indagationes
Mathematicae 26 (2015) 64–74. https://doi.org/10.1016/j.indag.2014.06.001
[2] H. Bai-lin, Elementary Symbolic Dynamics and Chaos in Dissipative Systems, World Scientific,
1989. https://doi.org/10.1142/0674
[3] S. Baldwin, Continuous itinerary functions and dendrite maps, Topology and its Applications 154
(2007) 2889–2938. https://doi.org/10.1016/j.topol.2007.04.001
[4] S. Baldwin, Julia sets and periodic kneading sequences, Journal of Fixed Point Theory and Applications 7 (2010) 201–222 . https://doi.org/10.1007/s11784-010-0007-y
[5] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney’s definition of chaos, The
American Mathematical Monthly 99 (1992) 332–334. https://www.jstor.org/stable/2324899
[6] A. F. Beardon, Iteration of Rational Functions, Complex Analytic Dynamical Systems, SpringerVerlag, 1991. https://doi.org/10.1007/978-1-4612-4422-6
[7] H. Bruin, D. Schleicher, Symbolic Dynamics of Quadratic Polynomials, Institut Mittag-Leffler, report no. 7, 2001. https://www.mat.univie.ac.at/ bruin/talks/TreesBook.pdf
[8] W. de Melo, S. Van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993.
https://doi.org/10.1007/978-3-642-78043-1
[9] R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edition, Westview, 2003.
https://doi.org/10.4324/9780429502309
[10] R. Devaney, D. Look, Symbolic dynamics for a Sierpinski curve Julia set,
Journal of Difference Equations and Applications 11(7) (2005) 581–596 .
https://doi.org/10.1080/10236190412331334473
[11] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University,
1995. https://doi.org/10.1017/cbo9780511626302
[12] S. Elaydi, Discrete Chaos, 2nd edition, Chapman and Hall/CRC, 2008.
https://doi.org/10.1201/9781420011043
[13] J. Milnor, Dynamics in One Complex Variable, 3rd edition, Princeton University Press, 2006.
https://doi.org/10.1007/978-3-663-08092-3
[14] S. Li, ω chaos and topological entropy, Transactions of the American Mathematical Society 339(1)
(1993) 243-249. https://doi.org/10.2307/2154217