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Abstract. In this paper we consider the family fa(x) = axd(x − 1) + x when a < 0 is a real number
and d ≥ 2 is an even integer. The function fa has a unique positive critical point. By decreasing
the parameter a, the behavior of the orbit of this critical point changes. In this paper, we consider
two cases. In the first case, the orbit of the positive critical point converges to 0, and in the second
case, the positive critical point is mapped to a repelling periodic point of period 2. In each case we
give a recursive formula to determine the number of the periodic points of fa. Also, we introduce
an invariant set on which fa is chaotic. We employ conjugacy map and symbolic dynamics in our
investigations.

Keywords. Cantor set, chaos, conjugacy, periodic points, symbolic dynamics.
Mathematics Subject Classification (2020): 37E05, 37E15.

1 Introduction

Symbolic dynamics is vastly employed in the study of discrete dynamical systems. The
study of a sequence space on finite symbols often provides a useful tool for investigating
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complicated behaviors of an iterating system. For example, to prove chaos in the logistic
family, Fµ(x) = µx(1 − x), where µ > 4, the sequence space on two symbols 0 and 1 is funda-
mental, where {0,1} is equipped with the discrete topology (see [9, 12]). Complex dynamics
also benefits from symbolic dynamics [3,7]. In [10], the dynamics of certain rational functions
with Julia sets that are Sierpinski curves are investigated by employing symbolic dynamics.
To study a quadratic Julia set that is dendrite, the sequence space on three symbols 0,1 and ⋆,
where {0,1,⋆} is equipped with a topology whose basis is

{
{0},{1},{0,⋆,1}

}
, is considered

in [4]. General symbolic dynamics and some of its applications are studied in [2, 11].
The dynamics of the family fa(x) = ax2(x − 1) + x is studied in [1] and it is shown that fa

is chaotic on some invariant set by employing negative Schwarzian derivative of fa. In this
paper we are going to investigate the real family fa,d(x) = axd(x − 1) + x, a generalization
of the the family fa(x) = ax2(x − 1) + x, when d ≥ 2 is an even integer and a < 0 is a real
number. Besides counting the number of periodic points, we study chaos in this family in
some cases. In fact, for some values of the parameter a, we construct invariant sets on which
fa,d is chaotic and outside of which fa,d has simple dynamics. In [14], it is shown that if the
topological entropy of a function is positive, then there will be a subset on which the function
is chaotic, although this subset is not presented explicitly. For simplicity, we fix d and replace
fa,d with fa. Since the Schwarzian derivative of fa is positive at some points when d > 2,
we will get help from some theorems of the complex dynamics to investigate the dynamics
of fa on these invariant sets. Also, symbolic dynamics is an essential tool in achieving our
goals. Regarding the properties of the family fa, we apply some special subsets of Aω, where
ω = N ∪ {0} and A is an infinite countable set which is equipped with a non-Hausdorff
topology.

This paper is organized as follows: In Section 2, we introduce A, an infinite countable set,
and a basis for a topology on it. Then we equip Aω with the product topology. This topology
is non-Hausdorff. Next, we define Σ, Σm and Σ̂m, three subspaces of Aω that are Hausdorff
and invariant under the shift map σ. Also, we show that the set of the periodic points of σ|Σ̂m

and the set of the periodic points of σ|Σ are dense in Σ̂m and in Σ, respectively. Moreover, we
show that (σ,Σ) and (σ, Σ̂m) have a dense orbit in Σ and in Σ̂m, respectively. In Section 3, we
show that most properties of fa, when a < 0 and d ≥ 2 is an even integer, are independent
of d. Also, we introduce closed invariant sets, Λ, Λm, and Λ̂m, for m ≥ 1, and study their
properties. In Section 4, we show that ( fa,Λ) (( fa,Λm) and ( fa, Λ̂m)) is conjugate to (σ,Σ)
((σ,Σm) and (σ, Σ̂m)), respectively (Theorem 4.1). These conjugacies enable us to prove that
( fa, Λ̂m) and ( fa,Λ) are chaotic (see Corollary 4.2). In Section 5, we count the number of
periodic points of (σ, Σ̂m), (σ,Σm), and (σ,Σ) by a recursive formula. In this way, we are
able to calculate the number of the fixed points of f n

a in two special cases by employing the
conjugacies introduced in Section 4.

We next describe our terminology and notations. Let I be an interval and f : I → I be a
C1 function. By f n we mean f ◦ f n−1, where f 0 is the identity function. The orbit of x ∈ I is
( f n(x))n≥0. A point x0 ∈ I is called a fixed point of f if f (x0) = x0. A fixed point x0 is called
non-hyperbolic if | f ′(x0)| = 1. The point x0 is called a periodic point of f of period n, if there is
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a natural number n such that f n(x0) = x0. In this case, the orbit of x0 is called a periodic orbit.
The basin of this periodic orbit is ∪n−1

i=0 {x : limk→∞ f kn(x) = f i(x0)}. The immediate basin of a
periodic orbit is the union of the connected components of its basin which contain a point of
the periodic orbit. The periodic orbit is a periodic attractor if its immediate basin contains an
open set.

We use the notation ( f , X), when f : X → X is a function. Let X be an infinite metric space
without any isolated point. Then ( f , X) is called chaotic on X if the set of the periodic points
of f is dense in X and ( f , X) has a dense orbit in X (see [5] and [9] for more details).

An interval J ⊆ I is called wandering if all its iterates J, f (J), · · · are disjoint and
(

f n(J)
)

n≥0
does not tend to a periodic orbit. A homterval is an interval on which f n is monotone for all
n ≥ 0.

The set A ⊆ X is called invariant under f if f (A) = A.

2 A sequence space on infinite symbols

In this section we introduce A, a set of infinite symbols and put a topology on it. Then we
define a sequence space on the symbols of A. Let

A = N ∪ {L, R, E,W,⋆}.

We equip A with a topology given by the basis

B = {{n},{L},{R},{L,⋆, R},{E,2n,2n + 2,2n + 4, · · · },{W,2n − 1,2n + 1, · · · } : n ∈ N}.

We set ω = N ∪ {0} and consider Aω with the product topology. It is obvious that Aω

is a non-Hausdorff space. Next we define the shift map σ : Aω → Aω by σ(s0, s1, s2, · · · ) =
(s1, s2, · · · ) which is continuous under the product topology.

In the following, we introduce three Hausdorff sub-spaces of Aω and describe their prop-
erties. We employ these sub-spaces to determine the dynamics of fa in the special cases.

In a sequence s ∈ Aω, a bar over a group of symbols indicates that the group is repeated
infinitely.

Definition 1. Let Σ ⊆ Aω consists of all s = (s0, s1, s2, · · · ) such that each pair si, si+1 where
i ≥ 0, satisfies the following conditions:

i. If si = k, then si+1 = k − 1, for k ≥ 2.

ii. If si = ⋆, then si+1 = E.

iii. If si ∈ {L, R}, then si+1 ∈ {⋆, L, R,2,4,6, · · · }.

iv. If si = 1, then si+1 ∈ {⋆, L, R}.

v. If si = W, then si+1 = E. Also, if si = E, then si+1 = W.
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Definition 2. For each m ≥ 1, Σm ⊆ Σ consists of all sequences s = (s0, s1, s2, · · · ) such that for
all i ≥ 0 , si ̸= ⋆ and if si ∈ {L, R}, then si+1 ∈ {L, R,2,4, · · · ,2m − 2}.

Note that in the case m = 1, if si ∈ {L, R}, then si+1 ∈ {L, R}.

Definition 3. Let Σ̂m be a subset of Σm consisting all s = (s0, s1, s2, · · · ) such that for i ≥ 0,
si /∈ {E,W} and also if si ∈ N, then si ≤ 2m − 2, where m ≥ 2. We denote the set of all
sequences on two symbols L and R by Σ̂1.

Proposition 2.1. The subspaces Σ, Σm and Σ̂m are Hausdorff and invariant under the shift map σ.

Proof. We only prove that Σ is Hausdorff. The proof of the invariance is straightforward.
Let s = (s0, s1, s2, · · · ), t = (t0, t1, t2, · · · ) ∈ Σ and si ̸= ti for some i ≥ 0. Since B \ {{L,⋆, R}}

is a basis for the subspace topology on A \ {⋆} which is Hausdorff, we consider only the
case that si = ⋆ or ti = ⋆. Suppose that si = ⋆. If ti ∈ N ∪ {E,W}, set Ui = {L,⋆, R} and
Vi = N ∪ {E,W}. Next define U = ∏j≥0 Uj and V = ∏j≥0 Vj, where Uj = Vj = A if j ̸= i, and
if ti = L or R, then ti+1 ∈ {⋆, L, R,2n} for some n, in this case, set Vi+1 = {⋆, L, R,2n} and
Ui+1 = {E,2n + 2,2n + 4, · · · }. It is clear that Ui+1 ∩ Vi+1 = ∅. Now, we define U = ∏j≥0 Uj
and V = ∏j≥0 Vj, where Uj = Vj =A if j ̸= i + 1.

In each case, U = ∏l≥0 Ul containing s and V = ∏l≥0 Vl containing t are two disjoint open
subsets of Aω.

In the following, we investigate the density of the periodic points and the existence of a
dense orbit in Σ and Σ̂m under the shift map σ. First, consider the following lemma.

Lemma 2.2. Let n be a non-negative integer, 0 ≤ i ≤ n + 1, ki ∈ N and

Ui =

{
{2k ∈ N : k ≥ ki} if i is an even number,

{2k − 1 ∈ N : k ≥ ki} if i is an odd number.

Then there is some l ∈ N such that 2l ≥ n + 2,

(2l,2l − 1,2l − 2, · · · ,2l − n) ∈
n

∏
i=0

Ui,

and

(2l − 1,2l − 2, · · · ,2l − n − 1) ∈
n+1

∏
i=1

Ui.

Proof. Let l0 = max{ki : 0 ≤ i ≤ n + 1} and l = l0 + n. Then 2l − i ∈ Ui.

Proposition 2.3.

(1) The set of the periodic points of σ|Σ̂m
is dense in Σ̂m.

(2) The set of the periodic points of σ|Σ is dense in Σ.
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Proof. Let U = ∏i≥0 Ui be a basis element of Aω. Therefore, there is some k ≥ 1 such that
Ui =A for i ≥ k.

(1) Let s = (s0, s1, s2, · · · ) ∈ Σ̂m ∩ U. In the case m ≥ 2, we consider all the possible symbols
for sk.

(i) sk = j, where 2 ≤ j ≤ 2m − 2.

(ii) sk = L, or R,or 1.

If s0 is not an odd integer, in case (i) we set t = (s0, s1, · · · , sk, j − 1, · · · ,2,1, R) and in case
(ii) we set t = (s0, s1, · · · , sk, R). Then t ∈ U ∩ Σ̂m is a periodic point. Now suppose that
s0 = 2l − 1, for some 1 ≤ l ≤ m − 1. Then t = (s0, s1, · · · , sk, j − 1, · · · ,2,1, R,2l) in case (i)
and t = (s0, s1, · · · , sk, R,2l) in case (ii) are periodic points contained in U ∩ Σ̂m.

By taking t = (s0, s1, · · · , sk) the proposition holds for m = 1.

(2) Suppose that s = (s0, s1, s2, · · · ) ∈ Σ ∩ U. Again, we consider two cases.

(i) Let si ̸= ⋆ for all i ≥ 0. Then there are some integer m and some sequence t =
(t0, t1, · · · ) ∈ Σ̂m such that si = ti for i = 0,1, · · · ,k − 1. Therefore, t ∈ U. By part (1),
there is a periodic point of σ|Σ̂m

in U ∩ Σ̂m. Thus, U contains a periodic point of
σ|Σ.

(ii) Let si = ⋆ for some i ≥ 0. If i ≥ k − 1, set

t =


(L) if s0 = ⋆,

(s0, s1, · · · , si−1, L,2l0) if s0 = 2l0 − 1 for some l0,

(s0, s1, · · · , si−1, L) otherwise.

If i ≤ k − 2, then by Lemma 2.2, we choose l such that 2l ≥ k − i − 1 and

(2l,2l − 1, · · · ,2l − (k − i − 2)) ∈ Ui+1 × Ui+2 × · · · × Uk−1.

Then we set

t =


(L,2l,2l − 1, · · · ,1) if s0 = ⋆,

(s0, s1, · · · , si−1, L,2l,2l − 1, · · · ,1, L,2l0) if s0 = 2l0 − 1 for some l0,

(s0, s1, · · · , si−1, L,2l,2l − 1, · · · ,1, L) otherwise.

In each case the periodic point t belongs to U ∩ Σ.

Remark 1. One can see that the set of the periodic points of σ in Σm is not dense in Σm.

Proposition 2.4. The shift map σ has a dense orbit in Σ and a dense orbit in Σ̂m.

Proof. Let g0 = L, g′0 = R, gi = 2i,2i − 1, · · · ,2,1, L, and g′i = 2i,2i − 1, · · · ,2,1, R for i ≥ 1. Let
D = ∪i≥0{gi, g′i}. For k ≥ 1, we call a1, a2, · · · , ak a k-string when aj ∈ D. For each k ≥ 1 we list
all the possible k-strings in a sequence

(
bkj

)
j≥1 and consider the infinite array
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b11 b12 b13 · · · b1s · · ·
b21 b22 b23 · · · b2s · · ·
...

...
...

...
br1 br2 br3 · · · brs · · ·
...

...
...

...

Then we arrange all the elements of {bkj}k,j≥1 in a sequence as follows:

s⋆ = ( b11︸︷︷︸,b12,b21︸ ︷︷ ︸,b13,b22,b31︸ ︷︷ ︸, · · · ,b1(r+s−1),b2(r+s−2), · · · ,brs, · · · ,b(r+s−1)1︸ ︷︷ ︸, · · · ).

The orbit of s⋆ under σ is dense in Σ because for every s = (s0, s1, s2, · · · ) ∈ Σ and every basis
element U = ∏i≥0 Ui containing s, where for some k ≥ 1, Ui =A for i ≥ k, there exists n such
that σn(s⋆) begins with brs for some s ≥ 1 , where r and brs are defined as follows.

• If si /∈ {E,W,⋆} for each i ≥ 0, then there exists some r ≤ k+ 2 such that brs = s0, s1, · · · , sk
when s0 is not an odd integer, and brs = 2j, s0, s1, · · · , sk otherwise.

• If s = (E,W), then by Lemma 2.2, there is some l such that (2l,2l − 1, · · · ,2l − k + 1) ∈
U0 × U1 × · · · × Uk−1. Then, r = 1 and brs = 2l,2l − 1, · · · ,1, R.

• If s = (W, E), then by Lemma 2.2, there is some l such that (2l − 1,2l − 2, · · · ,2l − k) ∈
U0 × U1 × · · · × Uk−1. Then, r = 1 and brs = 2l,2l − 1, · · · ,1, R.

• If si = ⋆ for some i ≥ k − 1 and if i ≥ 1, then there is some r ≤ i + 2 such that brs =

s0, s1, · · · si−1, R if s0 is not an odd integer and brs = 2j, s0, s1, · · · si−1, R if s0 = 2j − 1 for
some j. If i = 0, then r = 1 and brs = R.

• If si = ⋆ for some i ≤ k − 2, then by Lemma 2.2, there is some l such that (2l,2l −
1, · · · ,2l − k + i + 2) ∈ Ui+1 ×Ui+2 × · · · ×Uk−1. In the case i ≥ 1, there is some r ≤ i + 2
such that brs = s0, s1, · · · , si−1, R,2l,2l − 1, · · · ,1, R if s0 is not an odd integer and brs =

2j, s0, s1, · · · , si−1, R,2l,2l − 1, · · · ,1, R if s0 = 2j − 1 for some j. If i = 0, then r = 2 and
brs = R,2l,2l − 1, · · · ,1, R.

Thus, in all of the cases, σn(s⋆) ∈ U ∩ Σ or σn+1(s⋆) ∈ U ∩ Σ.
To find a dense orbit in Σ̂m, let Dm = ∪m−1

i=0 {gi, g′i} and assume that t⋆ ∈ Σ̂m is constructed
by successively listing all possible 1-strings, then 2-strings, then 3-strings, and so on. Note
that in this case the set of r-strings is finite. The proof that the orbit of t⋆ is dense is straight-
forward.

3 Invariant sets

In this section we state some common features of the family fa(x) = axd(x − 1) + x when
a is negative and d ≥ 2 is an even integer. Next, we study some sets on which fa is invariant.
First, note that:
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Figure 1. The graph of f−4.5

1. fa has only two fixed points, 0 and 1. The point 0 is non-hyperbolic.

2. fa(x) = 0 has only two non-zero solutions x0 and x1. Moreover, x0 < 0 < 1 < x1.

3. f ′a(x) = 0 has only two solutions c0 and c1 where c0 is a local minimum point and c1 is
a local maximum point of fa. Also, x0 < c0 < 0 < c1 < x1 (see Fig. 1).

4. For y ∈ (−∞, x0) ∪ (x1,∞) the equation fa(x) = y has a unique solution in (−∞, x0) ∪
(x1,∞) since fa : (−∞, x0) ∪ (x1,∞)→ R \ {0} is decreasing.

5. There is a repelling 2-cycle {p0, p1} such that | f n
a (x)| tends to ∞ for each x /∈ [p0, p1].

6. There are a sequence of open intervals
(

Jn
)

n≥0 and a sequence of closed intervals
(

In
)

n≥0
such that (see Fig. 2).

6.1.
· · · I2n+1 ⊑ J2n ⊑ I2n−1 ⊑ · · · ⊑ J0 ⊑ I0 ⊑ · · · ⊑ J2n−1 ⊑ I2n ⊑ J2n+1 · · · ,

(the notation I ⊑ J for two intervals I and J means that the right endpoint of I
coincides with the left endpoint of J)

6.2. c0 ∈ J0, c1 ∈ I0,

6.3. for every n ≥ 0, the endpoints of In and Jn are eventually mapped to 0,

6.4. fa(Jn) = Jn−1 and fa(In) = In−1,

6.5. for every n the orbit of any point of the interval Jn converges to 0,

6.6.
(

p0, p1
)
=

(
∪n≥0 In

)
∪
(
∪n≥0 Jn

)
.

Verification of these properties is the same as the proof of Lemma 1.2 in [1] and we do not
present it here. Note that the points and the intervals depend on a and d, for example we
should write c0(a,d), Jn(a,d), In(a,d) and etc. However, for simplicity, we have omitted
them.

These properties show that the interesting dynamics of fa happens in the interval [p0, p1].
In fact, the orbits of the points of the interval Ii can converge to 0, converge to infinity, or
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Figure 2. The images of Ii’s and Ji’s under fa

always stay in ∪i≥0 Ii. Therefore, the behavior of the points whose orbits stay in ∪i≥0 Ii under
fa is complicated. Note that if fa(c1) ≤ x1, then ∪∞

i≥0 Ii is invariant under fa and the orbit
of every point of ∪∞

i≥0 Ii meets I0 = [0, x1] and afterward does not leave I0. In this case the
behavior of fa|I0 is similar to the behavior of Fµ|[0,1] when µ ≤ 4. Therefore, from now on, we
suppose that fa(c1) > x1. In this paper, we consider the following cases.

(1) fa(c1) ∈ J2m−1 for some m ≥ 1.

(2) fa(c1) = p1.

We denote {
x ∈ [p0, p1] : f n

a (x) ∈ ∪i≥0 Ii ∪ {p0, p1} for all n ≥ 0
}

by Λm if fa(c1) ∈ J2m−1 for some m ≥ 1 and by Λ if fa(c1) = p1. Note that the value of a
determines whether fa(c1) ∈ J2m−1 for some m, or fa(c1) = p1. In fact, for each a < 0 and even
d ≥ 2, only one of the Λm’s and Λ may be defined. Thus, Λm and Λ depend on a and d but
for simplicity in writing we omit them from these notations.

Also, we define Λ̂m ⊆ Λm as follows.

Λ̂m =
{

x ∈ Λm : f n
a (x) ∈ ∪2m−2

i=0 Ii for all n ≥ 0
}

.

It is clear that Λ∩ Ji = ∅ and Λm ∩ Ji = ∅ for all i ≥ 0. Also, we have fa(Λ)⊆ Λ, fa(Λm)⊆ Λm,
and fa(Λ̂m) ⊆ Λ̂m. Note that the critical point c1 belongs to Λ but it does not belong to Λm

and Λ̂m. Moreover, x ∈ Λm \ {p0, p1} is a periodic point of fa|Λm if and only if x is a periodic
point of fa|Λ̂m

. In the following, we present more properties of these sets.

Proposition 3.1. The sets Λ, Λm, and Λ̂m are closed subsets of [p0, p1] and are invariant under fa.

Proof. The set Λ is a closed subset of [p0, p1] since Λ = [p0, p1] \ ∪n≥0 f−n
a (J0). To prove the

invariance of Λ under fa, note that fa(p0) = p1, fa(p1) = p0, fa(Ii+1) = Ii, and fa(I0)⊇∪i≥0 I2i.
Hence, for y ∈ Λ ∩ (∪i≥0 Ii) there is some x ∈ ∪i≥0 Ii such that fa(x) = y. The point x is in Λ,
otherwise f n

a (x) ∈ J0 for some n ≥ 0 which is a contradiction.
Similar arguments show that Λm and Λ̂m are closed subsets of [p0, p1] and are invariant

under fa.
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Note that the theory of complex dynamics guarantees that the function fa(x) = axd(x −
1) + x does not have any periodic attractor besides 0, when the orbit of critical point c1 con-
verges to the fixed point 0 or fa(c1) = p1 (see [6, Theorem 9.3.1.], [13, Theorem 10.15.]). There-
fore, no non-zero point of Λ and Λm could be in the basin of a periodic attractor. Thus, we
can conclude the following proposition.

Proposition 3.2. The sets Λ, Λm, and Λ̂m are totally disconnected.

Proof. If the interval L is a subset of Λm or Λ, then this interval does not contain the critical
points of fa and also their preimages, because the critical point c0 ∈ J0, in the case fa(c1) ∈
J2m−1, the orbit of c1 finally enters to J0, and in the case fa(c1) = p1, each neighborhood of
fa(c1) contains infinitely many points of Jn’s. Thus, f n

a is monotone on L for all n ≥ 1. This
means that L is a homterval. We know that a homterval is a wandering interval or every point
of it is contained in the basin of a periodic orbit (see [8, Chapter II, Lemma 3.1]). Since fa does
not have any wandering interval (see [8, Chapter II, Theorem 6.2]) and 0 is the only periodic
attractor of fa, then Λ and Λm are totally disconnected. Also, Λ̂m is totally disconnected
because Λ̂m ⊆ Λm.

4 Conjugacy

In this section, by introducing some conjugacy maps, we show that the restriction of the
shift map on the introduced subspaces in Section 2 can describe some dynamical behaviors
of fa on the invariant sets defined in Section 3.

Theorem 4.1.

(1) If fa(c1) = p1, then ( fa,Λ) is conjugate to (σ,Σ).

(2) If fa(c1) ∈ J2m−1 for some m ≥ 1, then ( fa,Λm) is conjugate to (σ,Σm) and ( fa, Λ̂m) is conju-
gate to (σ, Σ̂m).

Proof. (1) Let x ∈ Λ. Define h(x) = (s0, s1, s2, · · · ), where

sn =



j if f n
a (x) ∈ Ij for j ∈ N,

L if f n
a (x) ∈ [0, c1) = IL,

R if f n
a (x) ∈ (c1, x1] = IR,

E if f n
a (x) = p1,

W if f n
a (x) = p0,

⋆ if f n
a (x) = c1.

a. h is one-to-one. Note that h(x) = (W, E) (h(x) = (E,W), h(x) = (⋆, E,W), respec-
tively) if and only if x = p0 (x = p1, x = c1, respectively). Therefore, we assume
that x,y ∈ Λ \ {p0, p1, c1}, x < y, and h(x) = h(y) = (s0, s1, s2, · · · ). If si ̸= ⋆ for i ≥ 0,
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then f n
a (x), f n

a (y) ∈ Isn for each n ≥ 0. Since fa is monotonic on Isn , f n
a ([x,y]) is

a subinterval of Isn , for all n ≥ 0, with the end points f n
a (x) and f n

a (y). Thus, all
points of [x,y] belong to Λ. This contradicts Proposition 3.2. Now, suppose that
h(x) = h(y) = (s0, s1, s2, · · · , si−1,⋆, E,W), for some i ≥ 1. Then f i−1

a (x), f i−1
a (y) ∈

Isi−1 and f i
a(x) = f i

a(y) = c1. This is a contradiction since fa is monotone on Isi−1 .

b. h is onto. We know that h(p1) = (E,W), h(p0) = (W, E), and h(c1) = (⋆, E,W).

First, let (t0, t1, t2, · · · ) ∈ Σ, and ti ∈ N∪ {L, R}. Let Ît0,t1,··· ,tn = It0 ∩ f−1
a (It1)∩ · · · ∩

f−n
a (Itn), where Iti is the closure of Iti . Note that if tn ∈ N, then Itn = Itn , but if

tn = L or R, then Itn = Itn ∪ {c1}. By induction on n, we show that Ît0,t1,··· ,tn+1 is a
closed subinterval of It0 . It is clear that Ît0 = It0 is a closed interval. By induction
hypothesis Ît1,t2,··· ,tn+1 is a closed subinterval of It1 . Next we consider three cases.

(1) Let t0 = L or R. Then t1 ∈ {L, R, 2, 4, · · · }. In this case Ît1,t2,··· ,tn+1 ⊆ It1 ⊆ [0, p1]

and fa : It0 → [0, p1] is monotone.

(2) Let t0 = 1. Then t1 = L or R, Ît1,t2,··· ,tn+1 ⊆ It1 ⊆ [0, x1], and fa : It0 → [0, x1] is
monotone.

(3) Let t0 = k ≥ 2. Then t1 = k − 1, Ît1,t2,··· ,tn+1 ⊆ It1 , and fa : It0 → It1 is monotone.

Thus, in all these cases, Ît0,t1,··· ,tn+1 = It0 ∩ f−1
a ( Ît1,t2,··· ,tn+1) is a closed subinterval of

It0 .

Therefore, ( Ît0,t1,t2,··· ,tn)n≥0 is a sequence of nested closed intervals. Hence, there
is some x ∈ ∩n≥0 Ît0,t1,··· ,tn , consequently f n

a (x) ∈ Itn for each n ≥ 0. If f n
a (x) = c1

for some n, then f n+1
a (x) = p1. This is a contradiction since p1 /∈ Itn+1 . Therefore,

x ∈ It0,t1,··· ,tn = It0 ∩ f−1
a (It1) ∩ · · · ∩ f−n

a (Itn) and h(x) = (t0, t1, t2, · · · ).
Next, suppose that (t0, t1, · · · , ti−1,⋆, E,W) ∈ Σ, for some i ≥ 1. Then ti−k ∈ {k,k −
1, · · · ,2,1, L, R}, for 1 ≤ k ≤ i. To prove the ontoness of h, we use induction on k.
For k = 1, ti−1 ∈ {1, L, R}. Since, the functions

f : IL → [0, p1), (1)

f : IR → [0, p1), (2)

and
f : I1 → IL ∪ IR ∪ {c1} (3)

are onto, there is yi−1 ∈ Iti−1 such that fa(yi−1) = c1. Now, we suppose that there
is yi−k ∈ Iti−k such that fa(yi−k) = yi−(k−1) where k ≥ 2. If ti−k ∈ N, then ti−(k+1) ∈
{ti−k + 1, L, R}. We have

f : Iti−k+1 → Iti−k (4)

is onto and ∪i≥0 I2i ⊆ [0, p1]. Therefore, from (1), (2), and (4) we conclude that
there is yi−(k+1) ∈ Iti−(k+1) such that fa(yi−(k+1)) = yi−k. Finally, if ti−k = L or R,
then ti−(k+1) ∈ {1, L, R}. Again, from (1), (2), and (3) we conclude that there is
yi−(k+1) ∈ Iti−(k+1) such that fa(yi−(k+1)) = yi−k. Therefore, we showed that there is
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a finite sequence {yi−k}i
k=1 such that yi−k ∈ Iti−k and fa(yi−k) = yi−(k−1) for 1 ≤ k ≤

i, where yi = c1. Thus, h(y0) = (t0, t1, · · · , ti−1,⋆, E,W).

c. h is continuous. Suppose x ∈ Λ, U = ∏i≥0 Ui is a basis element of Aω containing
h(x) = (t0, t1, t2, · · · ); thus, there is some j such that Ut =A for t ≥ j.
If x = p1, then h(x) = (E,W). In this case, choose k ≥ 1 and δ > 0 such that 2k >

j, (2k,2k − 1,2k − 2, · · · ,2k − j) ∈ U0 × U1 × U2 × · · · × Uj, I2k ⊆ (p1 − δ, p1], and
I2k−2 ∩ (p1 − δ, p1] = ∅. Then (∪n≥k I2n) ∩ Λ = (p1 − δ, p1) ∩ Λ. Therefore, for y ∈
(p1 − δ, p1)∩Λ, we have y ∈ I2n for some n ≥ k. Hence h(y) = (2n,2n − 1, · · · ,2n −
j, · · · ,1, · · · ) ∈ U ∩ Σ. The proof of the continuity of h at p0 is similar.

Next, let ti ∈ N ∪ {L, R} for each i ≥ 0. Choose δ > 0 such that (x − δ, x + δ)

intersects only It0,t1,t2,··· ,tj and does not intersect the other Is0,s1,··· ,sj ’s. Such δ exists,
since Is0,s1,··· ,sj ’s are disjoint and the number of them is finite. Therefore (x − δ, x +

δ) ∩ Λ ⊆ It0,t1,t2,··· ,tj . Then for each y ∈ (x − δ, x + δ) ∩ Λ, the sequence h(y) agrees
with the sequence h(x) in the first j + 1 terms. Hence h(y) ∈ U ∩ Σ.

Finally, we consider the case that h(x) = (t0, t1, · · · , ti−1,⋆, E,W) for some i ≥ 1 or
h(x) = (⋆, E,W). We may suppose j ≥ i + 1. Then Ui = {L,⋆, R} or Ui =A. Choose
k and ϵ > 0 such that

(2k,2k − 1,2k − 2, · · · ,2k − j + i + 1) ∈ Ui+1 × Ui+2 × · · · × Uj,

I2k ⊆ (p1 − ϵ, p1), and I2k−2 ∩ (p1 − ϵ, p1) = ∅. Thus,
(
∪n≥k I2n

)
∩Λ = (p1 − ϵ, p1)∩

Λ. Choose η > 0 such that (c1 − η, c1 + η) ⊆ IL ∪ IR ∪ {c1} and fa
(
(c1 − η, c1 +

η)
)
⊆ (p1 − ϵ, p1]. Since f i

a(x) = c1, we choose δ > 0 such that (x − δ, x + δ) ∩ Λ
is a subset of It0,t1,··· ,ti−1 and f i

a
(
(x − δ, x + δ)

)
⊆ (c1 − η, c1 + η). Then for each

y ∈ (x − δ, x + δ) ∩ Λ, where y ̸= x, we have f i
a(y) ∈ (c1 − η, c1 + η) \ {c1} and

consequently, f i+1
a (y) ∈ I2n for some n ≥ k. This implies that h(y) ∈ U ∩ Σ.

d. h is a closed function. Since h : Λ → Σ is continuous, Λ is compact, and Σ is Haus-
dorff, we conclude that h is a closed function.

One can easily show that h ◦ fa = σ ◦ h. Thus, ( fa,Λ) is conjugate to (σ,Σ) under h.

(2) The proof of Part (2) is similar to the proof of Part (1). We just use the following function.
For x ∈ Λm, we define g(x) = (s0, s1, s2, · · · ), where

sn =



j if f n
a (x) ∈ Ij for j ∈ N,

L if f n
a (x) ∈ [0, c1) = IL,

R if f n
a (x) ∈ (c1, x1] = IR,

E if f n
a (x) = p1,

W if f n
a (x) = p0.

The last claim holds since g(Λ̂m) = Σ̂m.
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By Propositions 2.3, 2.4, and Theorem 4.1, we have the following corollary.

Corollary 4.2. (1) Let fa(c1) = p1. Then ( fa,Λ) is chaotic on Λ.

(2) Let fa(c1) ∈ J2m−1 for some m ≥ 1. Then ( fa, Λ̂m) is chaotic on Λ̂m.

Remark 2. Since Σ̂m ⊆ Σ for every m ∈ N and (σ,Σ) is conjugate to ( fa,Λ), the set Λ has
infinite nested subsets each of which is invariant and chaotic under fa.

5 The number of the periodic points

In this section our aim is to present some algorithms for computing the number of the
periodic points of period k of the systems (σ, Σ̂m), (σ,Σm), and (σ,Σ). These algorithms and
Theorem 4.1 enable us to count the number of the periodic points of period k of ( fa, Λ̂m),
( fa,Λm), and ( fa,Λ).

Definition 4. We call a finite sequence (s0, s1, · · · , sk−1) of length k, allowable in Σ̂m if there is
s ∈ Σ̂m such that the first k entries of s are precisely (s0, s1, s2, · · · , sk−1). We denote the set of
all allowable finite sequences of length k ≥ 2 that begin with a and end in b by Sa,b(k) and its
cardinality by |Sa,b(k)|.

Note that Sa,b(k) depends on m but for simplicity we omit m. In fact, if A1 = {L, R} and
Am = {L, R,1,2, · · · ,2m − 2} for m ≥ 2, then Σ̂m ⊆ Aω

m for m ≥ 1 . Hence, the members of
Sa,b(k) do not have entries exceeding 2m − 2. In the following we study the properties of
Sa,b(k) that are useful in obtaining an algorithm for calculating the number of the periodic
points of (σ, Σ̂m).

By Definitions 1-3, we have the following lemma.

Lemma 5.1. Let m ≥ 1 be given. For each k ≥ 2 and b ∈ Am, we have |SL,b(k)| = |SR,b(k)| and
|SL,R(k)| = |SR,L(k)|. Also, |SL,b(2)| = 0 if b is odd, otherwise |SL,b(2)| = 1.

Lemma 5.2. Let k ≥ 3 and m be given. Then

1. |SL,2ℓ(k)| = |SL,2ℓ+1(k − 1)|+ 2|SL,L(k − 1)| for m ≥ 3 and 1 ≤ ℓ ≤ m − 2.

2. |SL,2ℓ+1(k)| = |SL,2ℓ+2(k − 1)| for 0 ≤ ℓ ≤ m − 2 and m ≥ 2.

3. |SL,L(k)| = |SL,1(k − 1)|+ 2|SL,L(k − 1)| for m ≥ 2.

4. |SL,2m−2(k)| = 2|SL,L(k − 1)| for m ≥ 2.

5. |SL,L(k)| = 2|SL,L(k − 1)| for m = 1.

Proof. Note that

1. (L, a1, a2, · · · , ak−2,2ℓ) ∈ SL,2ℓ(k) if and only if (L, a1, a2, · · · , ak−3, ak−2) ∈ SL,2ℓ+1(k − 1)∪
SL,L(k − 1) ∪ SL,R(k − 1).
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2. (a0, a1, · · · , ak−2,2ℓ− 1) ∈ SL,2ℓ−1(k) if and only if (a0, a1 · · · , ak−2) ∈ SL,2ℓ(k − 1).

3. (a0, a1, · · · , ak−2, L) ∈ SL,L(k) if and only if (a0, a1, · · · ak−2) ∈ SL,L(k − 1) ∪ SL,R(k − 1) ∪
SL,1(k − 1).

4. (a0, a1, · · · , ak−2,2m− 2)∈SL,2m−2(k) if and only if (a0, a1, · · · , ak−2)∈SL,L(k− 1)∪SL,R(k−
1).

5. For m = 1, the entries of members of Sa,b(k) are only L or R. Hence, (a0, a1, · · · , ak−2, L)∈
SL,L(k) if and only if (a0, a1, · · · , ak−2) ∈ SL,L(k − 1) ∪ SL,R(k − 1).

Hence, by Lemma 5.1, our claims hold.

By parts 1 and 2 of Lemma 5.2 we have the following corollary.

Corollary 5.3. Suppose that m ≥ 3 is given. Let 1 ≤ ℓ ≤ m − 2. Then for k ≥ 4 we have

|SL,2ℓ(k)| = |SL,2ℓ+2(k − 2)|+ 2|SL,L(k − 1)|. (5)

Proposition 5.4. Suppose that m ≥ 2 and 1 ≤ ℓ ≤ m − 1 are given. Then for k ≥ 3 we have

|SL,2ℓ(k)| =



2∑n−2
t=0 |SL,L(k − 2t − 1)| if k = 2n − 1 ≤ 2(m − ℓ),

1 + 2∑n−2
t=0 |SL,L(k − 2t − 1)| if k = 2n ≤ 2(m − ℓ),

2∑m−ℓ−1
t=0 |SL,L(k − 2t − 1)| if k ≥ 2(m − ℓ) + 1.

Proof. First, by applying (5), m − ℓ− 1 times and then using part 4 of Lemma 5.2, the propo-
sition holds for k ≥ 2(m − ℓ) + 1.

To verify the other relations, we apply (5), n − 1 times in the case k = 2n ≤ 2(m − ℓ) and
n − 2 times in the case k = 2n − 1 ≤ 2(m − ℓ), to obtain the following equalities:

|SL,2ℓ(k)| = |SL,2ℓ+k−2(2)|+ 2
n−2

∑
t=0

|SL,L(k − 2t − 1)|; if k = 2n,

|SL,2ℓ(k)| = |SL,2ℓ+k−3(3)|+ 2
n−3

∑
t=0

|SL,L(k − 2t − 1)|; if k = 2n − 1.

Now, by using |SL,2ℓ+2n−2(2)| = 1 and |SL,2ℓ+2n−4(3)| = 2|SL,L(2)|, the proof of the proposi-
tion is complete.

By employing Part 2 of Lemma 5.2 and Proposition 5.4, the following corollary will be
achieved. (Note that by Lemmas 5.1 and 5.2 we have |SL,2ℓ+1(3)| = 1.)
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Corollary 5.5. Suppose that m ≥ 2 and 0 ≤ ℓ ≤ m − 2 are given. Then for k ≥ 4 we have

|SL,2ℓ+1(k)| =



2∑n−1
t=1 |SL,L(k − 2t)| if k = 2n ≤ 2(m − ℓ)− 1,

1 + 2∑n−1
t=1 |SL,L(k − 2t)| if k = 2n + 1 ≤ 2(m − ℓ)− 1,

2∑m−ℓ−1
t=1 |SL,L(k − 2t)| if k ≥ 2(m − ℓ).

Next, we need to provide a recursive formula for |SL,L(k)| which is stated in the following
corollary.

Corollary 5.6. Suppose that m ≥ 2 is given. Then for k ≥ 3 we have

|SL,L(k)| =



2∑n−1
t=0 |SL,L(k − 2t − 1)| if k = 2n + 1 ≤ 2m,

1 + 2∑n−1
t=0 |SL,L(k − 2t − 1)| if k = 2n + 2 ≤ 2m,

2∑m−1
t=0 |SL,L(k − 2t − 1)| if k ≥ 2m + 1.

Proof. By setting ℓ = 0 in Corollary 5.5 and employing Part 3 of Lemma 5.2, the corollary
holds for m ≥ 2 and k ≥ 5. The cases k = 3,4, also, hold by applying Lemmas 5.1 and 5.2.

Definition 5. Let s ∈ Am. We denote the set of periodic points of period k of (σ, Σ̂m) that
begin with s by Ps(k) and its cardinality by |Ps(k)|.

It is clear that (L, a1, a2, · · · , ak−1) ∈ PL(k) if and only if (L, a1, a2, · · · , ak−1, L) ∈ SL,L(k + 1).
Hence, by Lemma 5.1, for each k ≥ 1, we have

|PL(k)| = |PR(k)| = |SL,L(k + 1)|. (6)

It is clear that |PL(1)| = |PR(1)| = 1 and |Pℓ(1)| = 0 for ℓ ∈ {1,2, · · · ,2m − 2}.
By employing (6) and Corollary 5.6 the following corollary is obtained.

Corollary 5.7. Suppose that m ≥ 1 is given. Then for k ≥ 2 we have

|PL(k)| =



2∑n−1
t=0 |PL(k − 2t − 1)| if k = 2n ≤ 2m − 1,

1 + 2∑n−1
t=0 |PL(k − 2t − 1)| if k = 2n + 1 ≤ 2m − 1,

2∑m−1
t=0 |PL(k − 2t − 1)| if k ≥ 2m.

Proposition 5.8. Suppose that m ≥ 2 and 1 ≤ ℓ ≤ m − 1 are given. Then for each k ≥ 1 we have

|P2ℓ−1(k)| = |P2ℓ(k)| =
{

2|SL,2ℓ(k − 2ℓ+ 1)| if k ≥ 2ℓ+ 1,

0 if k ≤ 2ℓ.
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Proof. Let (a0, a1, a2, · · · , ak−2, ak−1) ∈ P2ℓ(k). Then a0 = ak = 2ℓ, a0, a1, · · · , a2ℓ−1 = 2ℓ,2ℓ −
1, · · · ,1 and a2ℓ ∈ {L, R}. Now if k ≤ 2ℓ, then 1 ≤ ak−1 ≤ 2ℓ , a contradiction. Hence, for
k ≤ 2ℓ, |P2ℓ(k)| = 0. If k ≥ 2ℓ+ 1, then (a0, a1, a2, · · · , ak−2, ak−1) corresponds to a sequence of
SL,2ℓ(k − 2ℓ+ 1) if a2ℓ = L and it corresponds to a sequence of SR,2ℓ(k − 2ℓ+ 1) if a2ℓ = R.
Therefore, |P2ℓ(k)| = 2|SL,2ℓ(k − 2ℓ+ 1)|.

By a similar argument we find that

|P2ℓ−1(k)| =
{

2|SL,2ℓ−1(k − 2ℓ+ 2)| if k ≥ 2ℓ+ 1,

0 if k ≤ 2ℓ.

By part 2 of Lemma 5.2 we have |SL,2ℓ−1(k − 2ℓ + 2)| = |SL,2ℓ(k − 2ℓ + 1)|, therefore, the
assertion holds.

By (6) and Propositions 5.4 and 5.8 we obtain the following corollary.

Corollary 5.9. Suppose that m ≥ 2 and 1 ≤ ℓ ≤ m − 1 are given. Then for k ≥ 2ℓ+ 2 we have

|P2ℓ−1(k)| = |P2ℓ(k)| =



4∑n−2
t=0 |PL(k − 2ℓ− 2t − 1)| if k = 2ℓ+ 2n − 2 ≤ 2m − 1,

2 + 4∑n−2
t=0 |PL(k − 2ℓ− 2t − 1)| if k = 2ℓ+ 2n − 1 ≤ 2m − 1,

4∑m−ℓ−1
t=0 |PL(k − 2ℓ− 2t − 1)| if k ≥ 2m.

Moreover, |P2ℓ−1(2ℓ+ 1)| = |P2ℓ(2ℓ+ 1)| = 2|SL,2ℓ(2)| = 2.

Let T̂m(k) be the set of periodic points of period k of (σ, Σ̂m) and |T̂m(k)| be its cardinality.
By (6) and Proposition 5.8 that show |PL(k)| = |PR(k)| and |P2ℓ−1(k)| = |P2ℓ(k)|, we have

|T̂m(k)| =

 2
(
|PL(k)|+ ∑m−1

t=1 |P2t−1(k)|
)

if m ≥ 2,

2|PL(k)| if m = 1.

Note that s ∈ Σm \ {(E,W), (W, E)} is a periodic point of σ|Σm if and only if s is a periodic
point of σ|Σ̂m

. Therefore, if we denote the number of the periodic points of period k of (σ,Σm)

by |Tm(k)|, then

|Tm(k)| =
{
|T̂m(k)|+ 2 if k is even,

|T̂m(k)| if k is odd.

Now by employing the above results we can have an algorithm to compute the number of
the periodic points of (σ, Σ̂m). Here we present this algorithm for m = 2,3.

Case m = 2. In this case A2 = {R, L,1,2},

|PL(k)| =


1 if k = 1,

2|PL(1)| if k = 2,

2|PL(2)|+ 1 if k = 3,

2
(
|PL(k − 1)|+ |PL(k − 3)|

)
if k ≥ 4,
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|P1(k)| =


0 if k = 1,2,

2 if k = 3,

4|PL(k − 3)| if k ≥ 4,
and
|T̂2(k)| = 2|PL(k)|+ 2|P1(k)|.

Case m = 3. In this case A3 = {R, L,1,2,3,4},

|PL(k)| =



1 if k = 1,

2|PL(1)| if k = 2,

2|PL(2)|+ 1 if k = 3,

2
(
|PL(3)|+ |PL(1)|

)
if k = 4,

2
(
|PL(4)|+ |PL(2)|

)
+ 1 if k = 5

2
(
|PL(k − 1)|+ |PL(k − 3)|+ |PL(k − 5)|

)
if k ≥ 6,

|P1(k)| =



0 if k = 1,2,

2 if k = 3,

4|PL(1)| if k = 4,

2 + 4|PL(2)| if k = 5,

4
(
|PL(k − 3)|+ |PL(k − 5)|

)
if k ≥ 6,

|P3(k)| =


0 if k ≤ 4,

2 if k = 5,

4|PL(k − 5)| if k ≥ 6,
and
|T̂3(k)| = 2|PL(k)|+ 2|P1(k)|+ 2|P3(k)|.

The results of this algorithm for 2 ≤ m ≤ 4 are shown in Table 1.
In the following theorem we determine the relation between the number of the periodic

points of period k in (σ,Σ) and in (σ,Σm) for suitable m.

Theorem 5.10. Let |T(k)| be the number of the periodic points of period k of (σ,Σ). Then |T(k)| =
|Tm(k)| if k = 2m − 1 or k = 2m.

Proof. We have |T(1)| = |T1(1)| = 2 and |T(2)| = |T1(2)| = 6. Therefore, let k ≥ 3 and s =

(s0, s1, · · · , sk−1) be a periodic point of (σ,Σ), where k = 2m or k = 2m − 1 for some m ≥ 2.
If there is i such that si ≥ 2m − 1, then for suitable n ≥ 0, the periodic point σn(s) of period
k will begin with 2m,2m − 1, · · · ,2,1, L or 2m,2m − 1, · · · ,2,1, R which is impossible. Thus,
si ∈ Am ∪ {E,W} and the theorem holds (see Table 1).
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|PL(k)| |P1(k)| |P3(k)| |P5(k)| |T̂m(k)| |Tm(k)| |T(k)|
k=1 1 0 - - 2 2 -
k=2 2 0 - - 4 6 -
k=3 5 2 - - 14 14 14
k=4 12 4 - - 32 34 34

m=2 k=5 28 8 - - 72 72 -
k=6 66 20 - - 172 174 -
k=7 156 48 - - 408 408 -
k=8 368 112 - - 960 962 -

k=1 1 0 0 - 2 2 -
k=2 2 0 0 - 4 6 -
k=3 5 2 0 - 14 14 -
k=4 12 4 0 - 32 34 -

m=3 k=5 29 10 2 - 82 82 82
k=6 70 24 4 - 196 198 198
k=7 168 56 8 - 464 464 -
k=8 404 136 20 - 1120 1122 -

k=1 1 0 0 0 2 2 -
k=2 2 0 0 0 4 6 -
k=3 5 2 0 0 14 14 -
k=4 12 4 0 0 32 34 -

m=4 k=5 29 10 2 0 82 82 -
k=6 70 24 4 0 196 198 -
k=7 169 58 10 2 478 478 478
k=8 408 140 24 4 1152 1154 1154

Table 1. The results of the algorithm for |T̂m(k)|, |Tm(k)| and |T(k)| when 2 ≤ m ≤ 4 and 1 ≤ k ≤ 8.

6 Conclusion

In this article we investigate the dynamics of the family fa(x) = axd(x − 1) + x when
a < 0 is a real number and d ≥ 2 is an even integer. The dynamical behavior of the orbit
of the positive critical point of fa changes by varying a. We consider the case that the orbit
of this critical point converges to 0 and also the case that this critical point is mapped to a
repelling periodic point of period 2. In each case we show that there is a closed and totally
disconnected invariant set on which the set of the periodic points of fa is dense and fa has a
dense orbit. Moreover, we give a recursive formula for counting the number of the periodic
points of fa.
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