A discussion of Feng-Liu operator and fixed point theorems on metric space

Document Type : Review Article

Authors

Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Nigeria

Abstract

In this paper, a collection of various multi-valued fixed point results using Feng-Liu operator on metric space are examined. Comparative discussion on some of the important ideas, using this operators are presented. Thereafter the handful of potential improvements on the existing literature are proposed.

Graphical Abstract

A discussion of Feng-Liu operator and fixed point theorems on metric space

Keywords

Main Subjects


[1] M. U. Ali, T. Kamram, W. Sintunavarat, P. Katchang, Mizoguchi-Takahashi’s fixed point theorem with α,η functions, Abstract and Applied Analysis 2013 (2013) 5–9.
[2] I. Altun, H. A. Hancer, U. Basar, Fixed point results for P-contractions via w-distance, Creative Mathematics and Informatics 32(1) (2023) 13–20.
[3] I. Altun, H. A. Hancer, A. Erduran, Fixed point results for single valued and set valued Pcontractions and application to second order boundary value problems, Carpathian Journal of Mathematics 36(2) (2020) 205–214.
[4] I. Altun, H. Dag, Nonlinear proximinal multivalued contractions on quasi-metric spaces, Journal of Fixed Point Theory and Applications (2017) DOI 10.1007/s1 1784-017-0436-y.
[5] I. Altun, A. H. Hancer, U. Basar, Fixed point results for P-contractions via w-distance, Creative Mathematics and Informatics 32(1) (2023) 13–20.
[6] I. Altun, M.Olgun, G.Minak,Onanewclassofmulti-valuedweaklyPicardoperatorsoncomplete metric spaces, Taiwanese Journal of Mathematics 19(3) (2015) 659–672.
[7] I. Altun, G. Minak, M. Olgun, Fixed points of multi-valued nonlinear F-contractions on complete metric spaces, Nonlinear Analysis: Modelling and Control 21(2) (2016) 201–210.
[8] A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi, Fixed point theorems for set-valued contractions, Rendiconti del Circolo Matematico di Palermo (2013) DOI 10.1007/s12215-013-0130-x.
[9] H. J. Asl, S. Rezapour, N. Shahzad, On fixed points of α-psi-contractive multi-functions, Journal of Fixed Point Theory and Applications 2012(6) (2012) 212–218.
[10] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamental Mathematicae 3(1) (1922) 133–181.
[11] V. Berinde, M. Päcurar, Iterative Approximation of Fixed Points of Single-valued Almost Contractions, in Fixed Point Theory and Graph Theory, Elsevier/Academic Press, Amsterdam (2016) 29–97.
[12] B. A. Bin Dehaish, A. Latif, Fixed point theorems for generalized contractive type multivalued maps, Journal of Fixed Point Theory and Applications 2012 (2012) 135.
[13] B. S. Choudhury, N. Metiya, S. Kundu, A multivalued fixed point result with associated data dependece and stability study, Problemy Analiza. Issues of Analysis 11(1) (2022) 45–57.
[14] L. Ciric, Fixed point theorems for multi-valued contractions in complete metric spaces, Journal of Mathematical Analysis and Applications 348(1) (2008) 499–507.
[15] L. Ciric, Multi-valued nonlinear contraction mappings, Nonlinear Analysis: Theory, Methods and Applications 71(7) (2009) 2716–2723.
[16] G.Durmaz,I.Altun, OnNonlinearSet-Valued θ-Contractions. Bulletin of the Malaysian Mathematical Sciences Society (2018) https://doi.org/10.1007/s40840-018-0689-7.
[17] J. G. Falset, L. Guran, E. Llorens-Fuster, Fixed points for mulit-valued contractions with respect to a w-distance, Scientiae Mathematicae Japonicae Online e-2009 (2009) 611–619.
[18] Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi’s fixed point theorems, Journal of Mathematical Analysis and Applicatios 317 (2006) 103112.
[19] L. Guran, Fixed points for multi–valued operators with respect to a w-distance on metric spaces, Carpathian Journal of Mathematics 23(2) (2007) 89–92.
[20] T. L. Hicks, B. E. Rhoades, A banach type fixed point theorem, Japanese Journal of Mathematics 24 (1979) 327–330. [21] H. A. Hancer, M. Olgun, I. Altun, Some new types multivalued F-contractions on quasi metric spaces and their fixed points, Carpathian Journal of Mathematics 35(1) (2019) 41–50.
[22] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings. Journal of Mathematical Analysis and Applications 332 (2007) 1468–1476.
[23] N. Hussain, G. Ali, I. Iqbal, B. Samet, The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions, Mathematics 8(2) (2020) 212.
[24] A. Hussain, M. Arshad, S. U. Khan, τ-Generalization of fixed point results for F-contractions, International Journal of Mathematics and Computer Science 1 (2015) 127–137.
[25] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric spaces with applications, In Abstract and Applied Analysis 2014 (2014) 1–11.
[26] N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued α − η − ψ-contractive mappings, Journal of Fixed Point Theory and Applications 2013 (2013) 212–235.
[27] N. Hussain, N. Yasmin, N. Shafqat, Multi-Valued Ciric Contractions on Metric Spaces with Applications, University of Nis, Faculty of Sciences and Mathematics 28(9) (2014) 1953–1964.
[28] I. Iqbal, N. Hussain, Fixed point theorems for generalized multi-valued nonlinear F-contractions, Journal of Nonlinear Science and Application 9 (2016) 5870–5893.
[29] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed points theorems in complete metric space, Scientiae Mathematicae Japonicae, 44 (1996) 381–391.
[30] T. Kamran, Mizoguchi-Takahashi’s type fixed point theorem Computers and Mathematics with Applications 57(3) (2009) 507–511.
[31] T. Kamran, Fixed point theorems for hybrid mappings satisfying an integral type contractive condition, Georgian Mathematical Journal 19 (2012) 117–125.
[32] H. Kaneko, Single-valued and multivalued f-contractions, Bollettino dell Unione Matematica Italiana, A(6) 4(1) (1985) 29–33.
[33] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, Journal of Mathematical Analysis and Applications 334(1) (2007) 132–139.
[34] A. Latif, A. A. N. Abdou, Fixed points of generalized contractive maps, Journal of Fixed Point Theory and Applications 2009 (2009) https://doi.org/10.1155/2009/487161
[35] A. Latif, A. A. N.Abdou, Some new weakly contractive type multimaps and fixed point results in metric spaces, Journal of Fixed Point Theory and Applications 2009 (2009) 12.
[36] A. Latif, A. A. N. Abdou, Multi-valued generalized nonlinear contractive maps and fixed points, Nonlinear Analysis 74 (2011) 1436–1444.
[37] A. Latif, A. A. N. Abdou, Fixed point results for generalized contractive multimaps in metric spaces, Journal of Fixed Point Theory and Applications (2009) 16.
[38] A. Latif, W. A. Albar, Fixed point results in complete metric spaces, Demonstratio Mathematica 41(1) (2008) 145–150. [39] L. Lin, C. Chuang, Some new fixed point theorems of generalized nonlinear contractive multivalued maps in complete metric spaces, Computers and Mathematics with Applications 62 (2011) 3555–3566.
[40] L. J. Lin, W. S. Du, Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, Journal of Mathematical Analysis Applications 323 (2006) 360–370.
[41] Z. Liu, Y. Lu, S. M. Kang, Fixed point theorems for multi-valued contractions with w-distance, Applied Mathematics and Computation 224 (2013) 535–552.
[42] Z. Liu, W. Sun, S. M. Kang, J. S. Ume, On fixed point theorems for multi-valued contractions, Journal of Fixed Point Theory and Applications 2010 (2010) 18.
[43] G.Minak, M.Olgun,I.Altun, Anewapproachtofixedpointtheoremsformultivaluedcontractive maps, Carpathian Journal of Mathematics 31(2) (2015) 241-248.
[44] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathemacal Analysis and Applications 141 (1989) 177–188.
[45] S. B. Nadler, Multi-valued contraction mappings, Pacific Journal of Mathematics30(1969)475–488.
[46] H. K. Nashine, L. K. Dey, R. W. Ibrahim, S. Radenovic, Feng-Liu-type fixed point result in orbital b-metric spaces and application to fractal integral equation, Nonlinear Analysis: Modelling and Control 26(3) (2021) 522–533.
[47] H. K. Nashine, Z. Kadelburg, Wardowski-Feng-Liu Type Fixed Point Theorems FOR Multi-valued Mappings, Fixed Point Theory 21(2) (2020) 697–706.
[48] A. Nicolae, Fixed point theorems for multi-valued mappings of Feng-Liu type, Fixed Point Theory 12 (2011) 145–154. [49] H.K.Pathak, I. Beg, Fixed point of multivalued contractions by altering distances with application to nonconvex Hammerstein type integral inclusions, Fixed Point Theory 22(1) (2021) 327–342.
[50] H. K. Pathak, N. Shahzad, Fixed point results for set-valued contractions by altering distances in complete metric spaces, Nonlinear Analysis: Theory, Methods and Applications 70(7) (2009) 26342641.
[51] T. Rasham, M. S. Shabbir, M. Nazam, A. Musatafa, C. Park, Orbital b-metric spaces and related f ixed point results on advanced Nashine-Wardowski-Feng-Liu type contractions with applications, Journal of Inequalities and Applications 2023 (1) (2023) 69.
[52] S. Reich, Fixed points of contractive functions, Bolletino dell’Unione Mathematica Italiana 5 (1972) 26–42.
[53] B. E. Rhoades, A comparison of various definitions of contractive mappings, Transactions of the American Mathematical Society 226 (1977) 257–290.
[54] H. Sahin, M. Aslantas, I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, Journal of Fixed Point Theory and Applications 22 (2019) 11–23.
[55] H. Sahin, M. Aslantas, A. A. Nasir Nasir, Some extended results for multivalued F-contraction mappings, Axioms 12(2)(2023) 116.
[56] H. Sahin, I. Altun, D. Turkoglu, Fixed point results for mixed multi-valued mappings of Feng-Liu type on Mb-metric spaces, Nonlinear System and Complexity 23 (2019) 67–80.
[57] B. Samet, C. Vetro, F. Vetro, Fixed point theorems for α-psi-contractive type mappings. Nonlinear Analysis 75 (2012) 2154–2165.
[58] B. Samet, C. Vetro, F. Vetro, An approximate fixed point result for multivalued mappings under twoconstraint inequalities, Journal of Fixed Point Theory and Applications (2012) DOI 10.1007/s1 1784-016-0399-4.
[59] M.S.Shagari, T. Alotaibi, R. Tabassum, A. A. Bakery, O. K. S. Mohamed, A. O.Mustafa, Feng-Liu’s Approach to Fixed Point Results of Intuitionistic Fuzzy Set-Valued Maps, Symmetry 15(4) (2023) 930.
[60] M. S. Shagari, S. Rashid, K. M. Abualnaja, M. Alansari, On nonlinear fuzzy set-valued Θcontractions with applications, AIMS Mathematics 6(10) (2021) 10431–10448.
[61] W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, in Journal of Fixed Point Theory and Applications, (M.A: Thera and J.B. Baillon Eds.), Pitman Research Notes in Mathematics Series 252 (1991) 397–406.
[62] J. S. Ume, Existence theorems for generalized distance on complete metric space, Journal of Fixed Point Theory and Applications, Article ID 397150(2010).
[63] J. S. Ume ,B. S. Lee, S. J. Cho, Some results on fixed point theorems for multivalued mappings in complete matric spaces, International Journal of Mathematics and Mathematical Sciences (2002) 319–325.
[64] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Journal of Fixed Point Theory and Applications 94 (2012) 6.
Volume 9, Issue 3
September 2024
Pages 211-248
  • Receive Date: 04 August 2024
  • Revise Date: 20 August 2024
  • Accept Date: 29 August 2024
  • Publish Date: 01 September 2024