[1] M. Aouchiche, P. Hansen, On a conjecture about Szeged index, European J. Combin. 31 (2010),
1662–1666.
[2] Ashrafi, A.R. Wiener Index of Nanotubes, Toroidal Fullerenes and Nanostars. In The Mathematics
and Topology of Fullerenes Cataldo, F., Graovac, A. and Ori, O.; Eds.; Springer Netherlands: Dordrecht, 2011; pp. 21–38.
[3] A. T. Balaban, P. V. Khadikar, S. Aziz, Comparison of topological indices based on iterated sum
versus product operations, Iranian J. Math. Chem. 1 (2010) 43–67.
[4] A. T. Balaban, Topological indices based on topological distances in molecular graphs, Pure Appl.
Chem. 55 (1983) 199–206.
[5] A. T. Balaban, Highly discriminating distance based numerical descriptor, Chem. Phys. Lett. 89
(1982) 399–404.
[6] Biggs, N. Algebraic graph theory. Second Edition. Cambridge Mathematical Library. Cambridge
University Press, 1993.
[7] H. Deng, On the sum-Balaban index, MATCH Commun. Math. Comput. Chem. 66 (2011) 273–284.
[8] A. Dobrynin, A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index,
J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086.
[9] Darafsheh M. R. Computation of topological indices of some graphs. Acta. Appl. Math. 110, 1225–
1235 (2010).
[10] R. Mohammadyari, M. R. Darafsheh, Topological indices of the Kneser graph KGn;k
, Filomat 26
(2012) 665–672.
[11] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976)
283–296.
[12] C. Godsil, G. Royle, Algebraic graph theory, Springer-Verlag New York, Inc. 2001.
[13] S. Gupta, M. Singh, A. K. Madan, Eccentric distance sum: A novel graph invariant for predicting
biological and physical properties, J. Math. Anal. Appl. 275 (2002) 386–401.
[14] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput.
Sci. 34 (1994) 1087–1089.
[15] Harary, F.: Graph Theory. Addison Wesley, Reading (1968).
[16] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature
of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339.
[17] G. A. Jones, Paley and the Paley graphs, Isomorphisms, symmetry and computations in algebraic
graph theory, Springer Proc. Math. Stat. 305, Springer, Cham, (2020) 155–183.
[18] G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9 (1958) 800–804.
[19] R. Sharafdini, T. Reti, On the Transmission-Based Graph Topological Indices, ´ Kragujevac J. Math.
44(1) (2020) 41–63.
[20] S. Shokrolahi Yancheshmeh, R. Modabbernia and M. Jahandideh, The Topological Indices Of The
Cayley Graphs of Dihedral Group D2n and the Generalized Quaternion Group Q2
n , Italian Journal
Of Pure And Applied Mathematics, 40 (2018) 424–433.
[21] H. S. Ramane, A. S. Yalnaik, Status connectivity indices of graphs and its applications to the boiling
point of benzenoid hydrocarbons, J. Appl. Math. Comput. (2016) 1–19.
[22] A. Loghman, Computing Wiener and hyper-Wiener indices ofunitary Cayley graphs, Iranian J.
Math. Chem. (2012) 121–125.
[23] R. Modabernia, Some Topological Indices Related to Paley Graphs, Iranian J. Math. Chem. 11 (2)
(2020) 107–112.
[24] A. I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl.
Math. 156 (2008) 125–130.
[25] H.S. Ramane, A.S. Yalnaik and R. Sharafdini, Status connectivity indices and co-indices of graphs
and its computation to some distance-balanced graphs. AKCE Int. J. Graphs Comb. 17(20) (2020)
98–108.
[26] D. B. West, Introduction to graph theory, Prentic-Hall, Upper Saddle River, NJ. 1996.