[1] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[2] I. Beck, Coloring of commutative rings, J . Algebra 116 (1988) 208-226.
[3] J. A. Bondy, U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[4] F. Hausdorff, Grundzuge der Mengenlehre, Leipzig. 1914.
[5] W. Imrich, S. Klavzar, Product Graphs, Structure and Recognition . Wiley, New York, 2000.
[6] M. M. M. Jaradat, M. Y. Alzoubi, An upper bound of the basis number of the lexicographic product of graphs, Australas. J. Combin. 32 (2005) 305-312.
[7] KH. Kamyab, M. Ghasemi, R.Varmazyar, Superconnectivity of lexicographic product graphs, Ars Combin, accepted.
[8] S. Klavzar, On the fractional chromatic number and the lexicographic product of graphs, Discrete Math. 185 (1998) 259-263.
[9] R. H. Lamprey, B. H. Barnes, Product graphs and their applications, Modeling and simulation (Proc. Fifth Annual Pittsburgh Conf., Univ. Pittsburgh, Pittsburgh, Pa., 1974), Vol. 5, Part 2, Instrument Soc. Amer., Pittsburgh, Pa., 1974, 1119–1123.
[10] S. Ch. Lee, R. Varmazyar, Zero-divisor graphs of multiplication modules, Honam Math. J. 34(4) (2012) 571–584.
[11] D. J. Miller, The categorical product of graphs, Canadian J. Math. 20 (1968) 1511–1521.
[12] C. Yang, J. M. Xu, Connectivity of lexicographic product and direct product of graphs, ArsCombin. 111 (2013) 3-12.