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Abstract. The graph Γ(R1 ◦ R2) of the lexicographic product of two commutative rings R1, R2 is
considered. It was shown that Γ(R1 ◦ R2) is connected and diam(Γ(R1 ◦ R2)) ≤ 2. We get the several
expressions for finding the connectivity κ(Γ(R1 ◦ R2)) when certain conditions are given.
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1 Introduction

We follow [3] for terminologies and notations of graph theory not defined here.
Let G be a simple undirected graph, where V(G) and E(G) denote the set of vertices and

the set of edges of G, respectively. For each vertex v ∈ V(G), the neighborhood NG(v) of v is
defined as the set of all vertices adjacent to v and degG(v) = |NG(v)| is the degree of v. The
number δ(G) = min{degG(v) | v ∈ V(G)} is the minimum degree of G. Let u, v be vertices in
a graph G. The distance between u and v is the length of a shortest path between them in G
and is denoted by d(u, v). If G is disconnected and u, v are in different components we say
d(u, v) = ∞. Let v be a vertex of a graph G. The eccentricity of v is

e(v) = max{d(u, v) |u ∈ V(G)}.

The diameter of a graph G is defined as max{e(v) |v ∈ V(G)} and is denoted by diam(G).
For an arbitrary subset S ⊂ V(G) we use G − S to denote the graph obtained by removing
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all vertices in S from G. For any connected graph G, if G − S is disconnected, then S is called
a vertex-cut. The connectivity of a graph G, denoted by κ(G), is the minimum cardinality of a
set S ⊂ V(G) such that G − S is either disconnected or the trivial graph K1. It is known that
κ(G) ≤ δ(G). If a graph G is disconnected, then we define κ(G) as ∞. It is known that when
the underlying topology of an interconnection network is modeled by a graph G = (V, E),
where V represents the set of processors and E represents the set of communication links in
the network, κ(G) is an important measurement for the fault tolerance of the network.

The lexicographic product G1 ◦ G2 of two graphs G1 and G2 is the graph having

V(G1 ◦ G2) = V(G1)× V(G2), and

E(G1 ◦ G2) = {(x1,y1)(x2,y2) | x1x2 ∈ E(G1) or x1 = x2,y1y2 ∈ E(G2)}.

Note that in the sense of isomorphism the lexicographic product does not satisfies the com-
mutative law.

Clearly, G1 ◦ G2 is connected if and only if G1 is connected.

Theorem 1.1. [12, Theorem 1] Let G1 and G2 be two graphs. If G1 is non-trivial, non-complete and
connected, then κ(G1 ◦ G2) = κ(G1).|V(G2)|.

The lexicographic product has generated a lot of interest mainly due to its various appli-
cations. According to [5], the lexicographic product of two graphs first was defined in [4].
Connectivity and super connectivity of lexicographic product of graphs have been studied
in [12] and [7], respectively. For more information about lexicographic product, see [6, 9]
and [11, 12].

In section 2, we deal with the lexicographic product of two commutative rings R1, R2 and
give their examples. We show that Γ(R1 ◦ R2) is connected and diam(Γ(R1 ◦ R2)) ≤ 2, and
then we find the expressions for finding κ(Γ(R1 ◦ R2)) when certain conditions are given.

In section 3, we investigate the connectivity of special subgraphs of Γ(R1 ◦ R2).

2 Connectivity of Γ(R1 ◦ R2)

Let R be a commutative ring. An element a of R is called a zero-divisor of R if there exists
a non-zero element b in R such that ab = 0R. Let Z(R) denote the set of all zero-divisors
of R. For a subset S of R, let S − {0R} be denoted S∗. By the zero-divisor graph Γ(R) of R
we mean the graph whose vertices are elements of Z(R), such that two distinct vertices x
and y are adjacent if and only if xy = 0R. Furthermore, Γ0(R) is a subgraph of Γ(R) with
V(Γ0(R)) = Z(R)∗.

By definition, Γ(R) is connected. It was shown that Γ0(R) is connected with diameter
less than or equal three. For more results and the history of this topic the reader is refereed
to [1, 2] and [10].

Also, Γ̃(R) is a graph with vertices all elements of R and two distinct elements x,y of R
are adjacent if and only if xy = 0R. Clearly, Γ0(R) is a subgraph of Γ(R) which is a subgraph
of Γ̃(R).
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We define Γ(R1 ◦ R2) as a simple graph with V(Γ(R1 ◦ R2)) = Z(R1 × R2) and two distinct
vertices (x1,y1) and (x2,y2) are adjacent if and only if x1x2 = 0R1 or x1 = x2 and y1y2 = 0R2 .

When divided by a positive integer m, the set of all integers with remainders forms a
commutative ring. This ring is called the ring of integers modulo m, and is denoted by Zm.

Example 2.1. We take R1 = Z2 and R2 = Z2
2(= Z2 × Z2). For convenience, let 0R1 = 0̄, x1 = 1̄

in R1, and let
0R2 = (0, 0), y1 = (1, 0), y2 = (0, 1), y3 = (1, 1)

in R2. Then Γ(R1) ∼= K1 and Γ(R2) ∼= K3. So Γ(R1) ◦ Γ(R2) ∼= K3 and κ(Γ(R1) ◦ Γ(R2)) = 2.
To draw the graph Γ(R1 ◦ R2), first complete the following table:

Elements of R1 × R2 Vertices of Γ(R1 ◦ R2) Degree

(0R1 , 0R2) (0R1 , 0R2) 6
(x1, 0R2) (x1, 0R2) 6
(0R1 , y1) (0R1 , y1) 6
(x1, y1) (x1, y1) 6
(0R1 , y2) (0R1 , y2) 6
(x1, y2) (x1, y2) 6
(0R1 , y3) (0R1 , y3) 6
(x1, y3) No -

Total 8 7 42

This table lists the vertices of Γ(R1 ◦ R2) and its degrees. For example,

NΓ(R1◦R2)(x1, y2) = {(x1, 0R2), (x1, y1), (0R1 , 0R2), (0R1 , y1), (0R1 , y2), (0R1 , y3)},

So Γ(R1 ◦ R2) ∼= K7 and κ(Γ(R1 ◦ R2)) = 6.

The following lemma holds by definition.

Lemma 2.2. Let R1 and R2 be commutative rings and (x,y) ∈ Z(R1 × R2).

1. If (x,y) ∈ R∗
1 × R∗

2 , then

NΓ(R1◦R2)(x,y)

= ({0R1} × R2) ∪̇ (NΓ0(R1)(x)× R2) ∪̇ ({x} × {0R1}) ∪̇ ({x} × NΓ0(R2)(y)).

2. If (x, y) ∈ {0R1} × R2, then

NΓ(R1×R2)(x,y) = Z(R1 × R2).

3. If (x, y) ∈ R∗
1 × {0R2}, then

NΓ(R1◦R2)(x,y) = ({0R1} × R2) ∪̇ (NΓ0(R1)
(x)× R2) ∪̇ ({x} × R2).
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Corollary 2.3. Let R1 and R2 be commutative rings and (x,y) ∈ Z(R1 × R2).

1. If (x,y) ∈ R∗
1 × R∗

2 , then

degΓ(R1◦R2)(x,y) = |R2|+ degΓ0(R1)
(x) · |R2|+ 1 + degΓ0(R2)(y).

2. If (x, y) ∈ {0R1} × R2, then

degΓ(R1×R2)(x,y) = |Z(R1 × R2)| − 1.

3. If (x, y) ∈ R∗
1 × {0R2}, then

degΓ(R1×R2)(x,y) = 2|R2|+ |R2| · degΓ(R1)
(x).

Proof. This is established by Lemma 2.2.

For every xi ∈ R∗
1 , let V(Γ(Rxi2)) be the set of all vertices (xi,yj) of V(Γ(R1 ◦ R2)) for all

yj ∈ R2. It is easy to check that if x2
i = 0R1 , then Γ(Rxi2)

∼= Kr where r = |R2|. Let x2
i ̸= 0R1 . If

xi ̸∈ Z(R1), then Γ(Rxi2)
∼= Γ(R2). If xi ∈ Z(R1), then Γ(Rxi2)

∼= Γ̃(R2).
Also, for every yj ∈ R2, let V(Γ(R1yj)) be the set of all vertices (0R1 ,yj) of V(Γ(R1 ◦ R2)).

Therefore, V(Γ(R1 ◦ R2)) =
⋃

xi∈R∗
1
(V(Γ(Rxi2))) ∪ V(Γ(R1yj)).

Theorem 2.4. Let R1 and R2 be two commutative rings. Then Γ(R1 ◦R2) is connected and diam(Γ(R1 ◦
R2)) ≤ 2.

Proof. All vertices of Γ(R1yj) are adjacent to all vertices of Γ(Rxi2). Hence diam(Γ(R1 ◦ R2))≤
2.

In the rest, we consider R1 = {0R1 , x1, · · · , xn} and R2 = {0R2 , y1, · · · , ym}.

Theorem 2.5. Let R1 and R2 be two commutative rings with Z(R1) = {0R1}, |R1| ≥ 3, and Z(R2) =

{0R2}. Then κ(Γ(R1 ◦ R2)) = |R2|.

Proof. There is no path between (xi,0R2) and (xt,0R2) for i ̸= t in Γ(R1 ◦ R2)− Γ(R1yj). Hence
κ(Γ(R1 ◦ R2)) ≤ |V(Γ(R1yj))| = |R2|.

Now, let S be a vertex-cut of Γ(R1 ◦ R2). Then Γ(R1 ◦ R2) − S has at least two distinct
components, say Γ1 and Γ2. Let (xa,yb) ∈ Γ1 and (xc,yd) ∈ Γ2. Therefore, xaxc ̸= 0R1 , that
is, xa ̸= 0R1 and xc ̸= 0R1 . If xa = xc, then yb = yd = 0R2 , a contradiction. So xa ̸= xc and
S = Γ(R1yj). Therefore κ(Γ(R1 ◦ R2)) = |R2|.

Let in the Theorem 2.5, Z(R2) ̸= {0R2}. By using notations of the proof of theorem, if
xa = xc, then ybyd ̸= 0R2 . By [12], there are κ2 = κ(Γ(R2)) internally disjoint paths P1, · · · , Pκ2

between yb and yd in Γ(R2). By choosing one vertex yt of each path Pt for t ∈ Zκ2 we get S =

{(xa,yt)} ∪ Γ(R1yj) where |S| = κ2 + |R2|. Also, for the case that xa ̸= xc we get S = Γ(R1yj).
Hence, we have the following result.
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Corollary 2.6. Let R1 be a commutative ring with Z(R1) = {0R1} and |R1| ≥ 3. Then

κ(Γ(R1 ◦ R2)) = |R2|,

for every commutative ring R2.

Theorem 2.7. Let R1 be a commutative ring with Z(R1) = {0R1}. The followings hold for every
commutative ring R2.

1. If |R1| = 1, then κ(Γ(R1 ◦ R2)) = |Z(R2)| − 1.

2. If |R1| = 2 and Z(R2) = {0R2} then κ(Γ(R1 ◦ R2)) = |R2|.

3. If |R1| = 2 and |Z(R2)| ≥ 2 then κ(Γ(R1 ◦ R2)) = |R2|+ κ2.

Proof. 1. If R1 = {0R1}, then Γ(R1 ◦ R2) ∼= Kr where r = |Z(R2)|. Hence κ(Γ(R1 ◦ R2)) =

r − 1.

2. Let R1 = {0R1 , x1}. Then, V(Γ(R1 ◦ R2)) = {(0R1 ,yj), (0R1 ,0R2), (x1,0R2)|yj ∈ R2} and
Γ(R1 ◦ R2) ∼= Km+2, as needed.

3. By similar argument just pirior to Corollary 2.6, we get κ(Γ(R1 ◦ R2)) = |R2|+ κ2.

Note that, if Z(R) = R then in general R is not the null ring. Take R = {0,2,4,6} where
addition is addition mod 8 and multiplication is multiplication mod 8. Then R is a ring with
Z(R) = R.

Theorem 2.8. Let R1 be a commutative rings with Z(R1) = R1. Then

κ(Γ(R1 ◦ R2)) = |R2|(κ(Γ(R1)),

for every commutative ring R2.
Furthermore, if Γ(R1) is complete, then κ(Γ(R1 ◦ R2)) = n|R2|+ κ(Γ̃(R2)).

Proof. Since Z(R1) = R1, we get Γ(R1 ◦ R2) ∼= Γ(R1) ◦ Γ̃(R2). If Γ(R1) is non-complete, then
the result holds by using Theorem 1.1.
Assume that Γ(R1) ∼= Kn+1. We can consider Γ(R1 ◦ R2) as a complete graph with vertices
Γ(R1yj) ∪ Γ(Rxi2) for every xi ∈ R1. By definition, S =

⋃n
i=2 Γ(Rxi2) ∪ Γ(R1yj) ∪ {(x1,yt)} for

t ∈ Zκ(Γ̃(R2))
is a minimum vertex-cut in Γ(R1 ◦ R2). Thus, κ(Γ(R1 ◦ R2)) = n|R2|+ κ(Γ̃(R2)).

Theorem 2.9. Let R1 and R2 be two commutative rings with Z(R1) ̸= R1 and Z(R1) ̸= {0R1}. Then
κ(Γ(R1 ◦ R2)) = |R2|.
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Proof. By hypothesis there exists xi ∈ R1 −Z(R1). There is no path between (xi,yj) and (xt,yj)

in Γ(R1 ◦ R2)− Γ(R1yj) for xt ∈ Z(R1)
∗ and yj ∈ Z(R2). Hence, κ(Γ(R1 ◦ R2)) ≤ |R2|.

Now, let S be a vertex-cut of Γ(R1 ◦ R2). Assume that Γ1 and Γ2 are distinct components of
Γ(R1 ◦ R2)− S. Let (xa,yb) ∈ Γ1 and (xc,yd) ∈ Γ2. Therefore xaxc ̸= {0R1}. Let xa, xc ∈ Z(R1)

∗

and A = {x′1, · · · , x′κ1
} be a minimum vertex-cut in Γ(R1) where κ(Γ(R1)) = κ1. Clearly, 0R1 ∈

A. There are two cases:
Case 1. Let xa ̸= xc. By [12] there are κ1 internally disjoint paths P1, · · · , Pκ1 between xa and
xc in Γ(R1). Choose one vertex xt of each path Pt for t ∈ Zκ1 . Then S = {(xt,yj)|yj ∈ R2}
where |S| = κ1.|R2|.
Case 2. Let xa = xc. Then ybyd ̸= 0R2 . There are two subcases:
Subcase 1. Let Z(R2) = {0R1}. Then

S = {(xi,yj), (xa,0R2)|xi ∈ NΓ(R1)
(xa),yj ∈ R2}

with |S| = degΓ(R1)
(xa).|R2|+ 1 ≥ δ(Γ(R1)).|R2|+ 1 ≥ κ1.|R2|+ 1.

Subcase 2. Let Z(R2) ̸= {0R2}. If yb ̸∈ Z(R2)
∗ or yd ̸∈ Z(R2)

∗, then S is same as Subcase 1.
Let yb,yd ∈ Z(R2)

∗. By [12] there are κ2 = κ(Γ(R2)) internally disjoint paths Q1, · · · , Qκ2

between yb and yd in Γ(R2). Choose one vertex yu of each path Qu for u ∈ Zκ2 . Then, S =

{(xi,yj), (xa,yu)|xi ∈ NΓ(R1)
(xa),yj ∈ R2} with |S| = degΓ(R1)

(xa).|R2|+ κ2 ≥ δ(Γ(R1)).|R2|+
κ2 ≥ κ1.|R2|+ κ2.

Furthermore, in the case that xa ̸∈ Z(R1)
∗ or xb ̸∈ Z(R1)

∗ we get S = Γ(R1yj).
Hence, in any case |S| ≥ |R2|, as needed.

3 Connectivitiy of the subgraphs of Γ(R1 ◦ R2)

In this section, we investigate the connectivity of subgraphs of Γ(R1 ◦ R2) for two com-
mutative rings R1 and R2. It is easy to check that the subgraph of Γ(R1 ◦ R2) whose vertices
are elements of Z(R1)

∗ × Z(R2)
∗ is equivalent to Γ0(R1) ◦ Γ0(R2).

Definition 1. Let R1 and R2 be two commutative rings.
The subgraph of Γ(R1 ◦ R2) whose vertices are elements of Z(R1)

∗ × R2 is denoted by
Γ01(R1 ◦ R2).

Also, the subgraph of Γ(R1 ◦ R2) whose vertices are elements of R1 × Z(R2)
∗ is denoted

by Γ02(R1 ◦ R2).

Example 3.1. Let R1 = Z4 and R2 = Z8. Clearly, Γ0(R1) ∼= K1, Γ0(R2) ∼= K1,2. Imagin x = 2̄.
Thus

V(Γ01(R1 ◦ R2)) = {(x,y)|y ∈ R2}.

Now, x2 = 0R1 implies that Γ0(R1) ◦ Γ0(R2) ∼= K3, Γ01(R1 ◦ R2) ∼= K8 and κ(Γ01(R1 ◦ R2)) = 7.

By definition, if Z(R1) = {0R1} then Γ01(R1 ◦ R2) is null. Consider Example 2.1.

Theorem 3.2. Let R1 and R2 be two commutative rings with Z(R1) ̸= {0R1}. Then κ(Γ01(R1 ◦
R2)) = κ(Γ0(R1))|R2|.
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Proof. Let Γ0(R1) be complete. Then Γ01(R1 ◦ R2) is a complete graph with vertices Γ(Rxi2)

where each Γ(Rxi2) is isomorphic to Γ̃(R2). Hence κ(Γ01(R1 ◦ R2)) = κ(Γ0(R1))|R2|.
Now, let Γ0(R1) be non-complete. By [1], Γ0(R1) is connected with diam(Γ0(R1))≤ 3. The

result holds by using Theorem 1.1.

Example 3.3. Let R1 = Z2 and R2 = Z6. Let y1 = 2̄,y2 = 3̄,y3 = 4̄ in Z6. Thus

V(Γ02(R1 ◦ R2)) = {(x,yj)|x ∈ R1, j ∈ Z3}.

So, Γ02(R1 ◦ R2) ∼= K6 and κ(Γ02(R1 ◦ R2)) = 5.

By definition, if Z(R2) = {0R2} then Γ02(R1 ◦ R2) is null.
Let Z(R2) ̸= {0R2}. Now, by Γ02(R1 ◦ R2) ∼= Γ̃(R1) ◦ Γ0(R2) and using Theorem 1.1, we

have the following result.

Theorem 3.4. Let R1 and R2 be two commutative rings with Z(R2) ̸= {0R2}. Then κ(Γ02(R1 ◦
R2)) = κ(Γ̃(R1))|Z(R2)

∗|.
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