Let (N;G) be a pair of non-abelian finite p-groups and K be a normal subgroup of G such that G = N \times K, where K is a d-generator group of order pm. Moreover, let |N| = p^n and {N'| = p^k. Then |M(N;G)|= p^{1/2 (n-1)(n-2)+1+(n-1)m-s'} , where M(N;G) is the Schur multiplier of the pair (N;G) and s0 is a non-negative integer. In this paper, the non-abelian pairs (N;G) for s0 = 0; 1; 2; 3 are characterized.
Khamseh, E. (2023). On pairs of non-abelian finite p-groups. Journal of Discrete Mathematics and Its Applications, 8(4), 239-248. doi: 10.22061/jdma.2024.10706.1068
MLA
Khamseh, E. . "On pairs of non-abelian finite p-groups", Journal of Discrete Mathematics and Its Applications, 8, 4, 2023, 239-248. doi: 10.22061/jdma.2024.10706.1068
HARVARD
Khamseh, E. (2023). 'On pairs of non-abelian finite p-groups', Journal of Discrete Mathematics and Its Applications, 8(4), pp. 239-248. doi: 10.22061/jdma.2024.10706.1068
CHICAGO
E. Khamseh, "On pairs of non-abelian finite p-groups," Journal of Discrete Mathematics and Its Applications, 8 4 (2023): 239-248, doi: 10.22061/jdma.2024.10706.1068
VANCOUVER
Khamseh, E. On pairs of non-abelian finite p-groups. Journal of Discrete Mathematics and Its Applications, 2023; 8(4): 239-248. doi: 10.22061/jdma.2024.10706.1068