[1] M. Afenyo, F. Khan, B. Veitch, M. Yang, Modeling oil weathering and transport in sea ice, Mar. Pollut. Bull. 107(1) (2016) 206-215.
[2] L. C. Bender, Modification of the physics and numerics in a third-generation ocean wave model, J. Atoms Ocean. Tech. 13(3) (1996) 726-750.
[3] C. J. Cotter, J. Shipton, Mixed finite elements for numerical weather prediction, J. Comput. Phys. 231(21) (2012) 7076-7091.
[4] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific: USA, 2007.
[5] N. Flyer, G. B. Wright, Transport schemes on a sphere using radial basis functions, J. Comput. Phys. 226(1) (2007) 1059–1084.
[6] B. Fornberg, E. Lehto, Stabilization of RBF–generated finite difference methods for convective PDEs, J. Comput. Phys. 230(6) (2011) 2270–2285.
[7] D. Gunderman, N. Flyer, B. Fornberg, Transport schemes in spherical geometries using spline-based RBF-FD with polynomials, J. Comput. Phys. 408 (2020) 109–256.
[8] A. Hamed, M. Tadi, A numerical method for inverse source problems for Poisson and Helmholtz equations, Phys. Lett. A. 380(44) (2016) 3707–3716.
[9] Y. C. Hon, R. Schaback, Solving the 3D Laplace equation by meshless collocation via harmonic kernels, Adv. Comput. Math. 38(2013) 1–19.
[10] Y. C. Hon, R. Schaback, M. Zhong, The meshless Kernel-based method of lines for parabolic equations, Comput. Math. Appl. 68(12) (2014) 2057–2067.
[11] Y. C. Hon, R. Schaback, Direct meshless kernel techniques for time-dependent equations, Appl. Math. Comput. 258(2015) 220–226.
[12] A. Khodadadian, C. Heitzinger, A transport equation for confined structures applied to the OprP, Gramicidin A, and KcsA channels, J. Comput. Electron. 14(2) (2015) 524–532.
[13] M. Krems, The boltzmann transport equation: Theory and applications, Website, December 2007.
[14] P. H. Lauritzen, W. C. Skamarock, M. Prather, M. Taylor, A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model Dev. 5(3) (2012) 887–901.
[15] D. Levin, The approximation power of moving least-squares, Math. Comput. 67(224) (1998) 1517-1531.
[16] J. MacLaren, L. Malkinski, J.Wang, First principles based solution to the boltzmann transport equation for co/cu/co spin valves, Mater. Res. Soc. Symp. Proc. 614 (2000).
[17] D. Mirzaei, R. Schaback, M. Dehghan, On generalized moving least squares and diffuse derivatives, IMA J. Numer. Anal. 32 (2012) 983-1000.
[18] D. Mirzaei, Direct approximation on spheres using generalized moving least squares, BIT Numer. Math. 57(4) (2017) 1041–1063.
[19] V. Mohammadi, M. Dehghan, A. Khodadadian, T. Wick, Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving kriging least squares approximations, Eng. Comput. 37 (2021) 1231-1249.
[20] R. D. Nair, J. Côté, A. Staniforth, Cascade interpolation for semi–Lagrangian advection over the sphere, Q. J. Roy. Meteor. Soc. 125(556) (1999) 1445–1486.
[21] R. D. Nair, P. H. Lauritzen, A class of deformational flow test cases for linear transport problems on the sphere, J. Comput. Phys. 229(23) (2010) 8868–8887.
[22] R. Schaback, Error analysis of nodal meshless methods, in: Meshfree methods for partial differential equations VIII, Springer, 2017, 117–143.
[23] V. Shankar, G. B. Wright, Mesh-free semi-Lagrangian methods for transport on a sphere using radial basis functions, J. Comput. Phys. 366 (2018) 170–190.
[24] M. Taylor, J. Edwards, S. Thomas, R. D. Nair, A mass and energy conserving spectral element atmospheric dynamical core on the cubed–sphere grid, J. Phys.: Conf. Ser. 78 (2007) 012074
[25] H. Wendland, Scattered Data Approximation, in: Cambridge Mongraph on Applied and Computational Mathematics, Cambridge University Press, 2005.
[26] L. Zhang, J. Ouyang, X. Zhang, The two–level element free Galerkin method for MHD flow at high Hartmann numbers, Phys. Lett. A. 372 (2008) 5625–5638.