On the modified Wiener number

Document Type : Original Article


Department of Mathematics, University of Kashan


The Graovac-Pisanski index is defined in 1991 namely 56 years after the definition of Wiener index by Graovac and Pisanski. They called it as modified Wiener index based on the sum of distances between all the pairs α(u,α(u)) where α stands in the automorphism group of given graph. In this paper, we compute the Graovac-Pisanski index of some classes of graphs.

Graphical Abstract

On the modified Wiener number

[1] M. Deza, M. Dutour Sikiric and P. W. Fowler, Zigzags, railroads, and knots in fullerenes, J. Chem. Inf. Comp. Sci. 44 (2004) 1282-1293.
[2] M. Dutour Sikiric, O. Delgado-Friedrichs, and M. Deza, Space fullerenes: computer search for new Frank-Kasper structures, Acta Crystallogr. A 66 (2010) 602-615.
[3] S. Firouzian, M. Faghani, F. Koorepazan Moftakhar and A. R. Ashrafi, The hyperWiener and modified hyper-Wiener indices of graphs with an application on fullerenes, Studia Universitatis Babes-Bolyai, Chemia 59 (2014) 163-170.
[4] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.
[5] M. Ghorbani, Fullerene graphs with pentagons and heptagons, J. Math. Nanosci., 3 (2013) 33-37.
[6] M. Ghorbani and T. Ghorbani, Computing the Wiener index of an infinite class of fullerenes, Studia Ubb Chemia, 58 (1) (2013) 43-50.
[7] M. Ghorbani and M. Hakimi-Nezhaad, An algebraic study of non classical fullerenes, Fullerenes, Nanotubes and Carbon Nanostructures, (2015), DOI:10.1080/1536383X.2015.1090433.
[8] M. Ghorbani and S. Klavzar, Modified Wiener index via canonical metric representation, and some fullerene patches, Ars Math. Contemp. 11 (2016) 247254.
[9] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53-62.
[10] I. Gutman and L. Soltes, The range of the Wiener index and its mean isomer degeneracy, Z. Naturforsch. 46a (1991) 865 − 868.
[11] M. Hakimi-Nezhaad and M. Ghorbani, Differences between Wiener and modified Wiener
indices, J. Math. NanoSci. 4 (2014) 19 − 25.
[12] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
[13] H. W. Kroto, J. R. Heath, S. C.OBrien, R. F. Curl and R. E. Smalley, C60: buckminster fullerene, Nature 318 (1985) 162-163.
[14] H. J. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17-20.