[1] M. Deza, M. Dutour Sikiric and P. W. Fowler, Zigzags, railroads, and knots in fullerenes, J. Chem. Inf. Comp. Sci. 44 (2004) 1282-1293.
[2] M. Dutour Sikiric, O. Delgado-Friedrichs, and M. Deza, Space fullerenes: computer search for new Frank-Kasper structures, Acta Crystallogr. A 66 (2010) 602-615.
[3] S. Firouzian, M. Faghani, F. Koorepazan Moftakhar and A. R. Ashrafi, The hyperWiener and modified hyper-Wiener indices of graphs with an application on fullerenes, Studia Universitatis Babes-Bolyai, Chemia 59 (2014) 163-170.
[4] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.
[5] M. Ghorbani, Fullerene graphs with pentagons and heptagons, J. Math. Nanosci., 3 (2013) 33-37.
[6] M. Ghorbani and T. Ghorbani, Computing the Wiener index of an infinite class of fullerenes, Studia Ubb Chemia, 58 (1) (2013) 43-50.
[7] M. Ghorbani and M. Hakimi-Nezhaad, An algebraic study of non classical fullerenes, Fullerenes, Nanotubes and Carbon Nanostructures, (2015), DOI:10.1080/1536383X.2015.1090433.
[8] M. Ghorbani and S. Klavzar, Modified Wiener index via canonical metric representation, and some fullerene patches, Ars Math. Contemp. 11 (2016) 247254.
[9] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53-62.
[10] I. Gutman and L. Soltes, The range of the Wiener index and its mean isomer degeneracy, Z. Naturforsch. 46a (1991) 865 − 868.
[11] M. Hakimi-Nezhaad and M. Ghorbani, Differences between Wiener and modified Wiener
indices, J. Math. NanoSci. 4 (2014) 19 − 25.
[12] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
[13] H. W. Kroto, J. R. Heath, S. C.OBrien, R. F. Curl and R. E. Smalley, C60: buckminster fullerene, Nature 318 (1985) 162-163.
[14] H. J. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17-20.