[1] A. R. Ashrafi and M. Ghorbani, Eccentric Connectivity Index of Fullerenes, In: I. Gutman, B. Furtula, Novel Molecular Structure Descriptors Theory and Applications II. (2008) 183-192.
[2] A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235 (2011) 4561- 4566.
[3] A. Dobrynin and A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem., Inf., Comput. Sci. 34 (1994) 1082-1086.
[4] T. Došlić, M. Ghorbani and M. A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Util. Math. 84 (2011) 197-209.
[5] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.
[6] A. Graovać and T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991) 53-62.
[7] M. Ghorbani, Connective eccentric index of fullerenes, J. Math. Nanosci. 1 (2011) 43-50.
[8] M. Ghorbani, A. R. Ashrafi and M. Hemmasi, Eccentric connectivity polynomials of fullerenes, Optoelectronics and Advanced Materials-(RC), 3(12) (2009) 1306 - 1308.
[9] M. Ghorbani and M. Hakimi-Nezhaad, A note on modified eccentric connectivity index, submitted.
[10] S. Gupta, M. Singh and A. K. Madan, Connective eccentricity Index: A novel topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18-25.
[11] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: buckminsterfullerene, Nature 318 (1985) 162-163.
[12] V . Sharma , R . Goswami and A.K Madan , Eccentric connectivity index : A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem . Inf . Comput . Sci. 37 (1997) 273-282.