Fullerene graphs with pentagons and heptagons

Document Type : Original Article


Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran


A fullerene is a three connected cubic planar graph. In this paper, we introduce a new class of fullerenes, with pentagonal and heptagonal rings.

Graphical Abstract

Fullerene graphs with pentagons and heptagons


[1] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"), 1997. Online corrected version: (2006) "molecular graph".
[2] "Fullerene", Encyclopædia Britannica on-line.
[3] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R.E. Smalley, Nature 318 (1985) 162-163.
[4] H. W. Kroto, J. E. Fichier, D. E Cox, The Fulerene, Pergamon Press, New York, 1993.
[5] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.
[6] P. W. Fowler, D. E. Manolopoulos, D. B. Redmond, R.Ryan, Possible symmetries of fullerenes structures, Chem. Phys. Lett. 202 (1993) 371–378.
[7] M. Ghorbani, M. Songhori, A. R. Ashra i and A. Graovac, Symmetry Group of (3,6)- Fullerenes, Fullerenes, Nanotubes and Carbon Nanostructures (2014), DOI: 10.1080/1536383X.2014.993064.
[8] A. E. Vizitiu, M. V. Diudea, S. Nikolić, D. Janežič, Retro-leapfrog and related retro map operations, J. Chem. Inf. Model., 46 (2006) 2574–2578.
[9] K. Kutnar, D. Marušič, On cyclic edge-connectivity of fullerenes, Discr. Appl. Math. 156 (2008) 1661–1669.
[10] B. King, M. V. Diudea, The chirality of icosahedral fullerenes: a comparison of the tripling (leapfrog), quadrupling (chamfering), and septupling (capra) trasformations, J. Math. Chem. 39 (2006) 597–604.
[11] M. V. Diudea, P. E. John, A. Graovac, M. Primorac, T. Pisanski, Leapfrog and related operations on toroidal fullerenes, Croat. Chem. Acta 76 (2003) 153–159.
Volume 3, 1-2
June 2013
Pages 33-37
  • Receive Date: 04 March 2013
  • Revise Date: 04 April 2013
  • Accept Date: 23 May 2013
  • Publish Date: 01 June 2013