Remarks on atom bond connectivity index

Document Type : Full Length Article

Author

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 – 136, I R. Iran

Abstract

A topological index is a function Top from Σ into real numbers with this property that Top(G) = Top(H), if G and H are isomorphic. Nowadays, many of topological indices were defined for different purposes. In the present paper we present some properties of atom bond connectivity index.

Graphical Abstract

Remarks on atom bond connectivity index

Keywords


1. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc.,69 (1947), 17-20.
2. B. Zhou and Z. Du, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem., 63(1) (2010), 101 – 112.
3. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615.
4. E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom-bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849-855.
5. E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463 (2008), 422-425.
6. I. Gutman, and N. Trinajstić, Graph theory and molecular orbitals. Total π- electron energy of alternant  hydrocarbons, Chem. Phys. Lett., 17 (1972), 535- 538.
7. K. Ch. Das, Atom-bond connectivity index of graphs, Disc. Appl. Math., 158 (2010), 1181-1188.
8. K. C. Das, I. Gutman and B. Furtula, On atom-bond connectivity index, Chem. Phys. Lett., 511 (2011), 452–454.
9. G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman and Hall/CRC, 2008.
Volume 2, 1-2
June 2012
Pages 29-36
  • Receive Date: 06 September 2011
  • Revise Date: 20 February 2012
  • Accept Date: 23 May 2012
  • Publish Date: 01 June 2012