The augmented eccentric connectivity index of nanotubes and nanotori

Document Type : Full Length Article

Author

Department of Mathematics, Yüzüncü Yıl University, Van 65080, Turkey

Abstract

Let G be a connected graph, the augmented eccentric connectivity index is a topological index was defined as $\zeta(G)=\sum_{i=1}^nM_i/E_i$, where Mi is the product of degrees of all vertices vj, adjacent to vertex vi, Ei is the largest  distance between vi and any other vertex vk of G or the eccentricity of i v and n is the number of vertices in graph G. In this paper exact formulas for the augmented eccentric connectivity index of TUC4C8(S) nanotube and TC4C8(R)  nanotorus are given.

Graphical Abstract

The augmented eccentric connectivity index of nanotubes and nanotori

Keywords


References
1. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
2. M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York, 2000.
3. J. Devillers and A.T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
4. M. V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, Nova Sci. Publ.,Huntington, NY, 2000.
5. S. Bajaj, S. S. Sambi and S. Gupta, A. K. Madan, Model for Prediction of Anti-HIV Activity of 2-Pyridinone Derivatives Using Novel Topological Descriptor ,QSAR Comb. Sci., 25 (2006), 813-823.
6. S. Ediz, The augmented eccentric connectivity index of an infinite class of nanostar dendrimers, Optoelectron. Adv. Mater.-Rapid Comm., 4(12) (2010), 2216-2217.
7. S. Iijima, Helical microtubules of graphitic carbon. Nature, 354 (1991), 56-58.
8. M. V. Diudea and A. Graovac, Generation and graph-theoretical properties of C4-tori, MATCH Commun. Math. Comput. Chem., 44 (2001), 93-102.
9. M. V. Diudea and I. Silaghi-Dumitrescu, B. Parv, Toranes versus torenes, MATCH Commun. Math. Comput. Chem., 44 (2001), 117-133.
10. M. V. Diudea and P.E. John, Covering polyhedral tori, MATCH Commun. Math. Comput. Chem., 44 (2001), 103-116.
11. M. V. Diudea, Graphenes from 4-valent tori, Bull. Chem. Soc. Jpn., 75 (2002), 487-492.
12. M. V. Diudea, Hosoya polynomial in tori, MATCH Commun. Math. Comput. Chem., 45 (2002), 109-122.
13. M. V. Diudea, M. Stefu, B. Parv and P.E. John, Wiener index of armchair polyhex nanotubes, Croat. Chem. Acta, 77 (2004), 111-115.
14. M. Diudea and M. Stefu, Wiener index of 4 8 C C nanotubes, MATCH Commun. Math. Comput. Chem., 50 (2004), 133-144.
15. A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math., 235(16) (2011), 4561-4566.
16. S. Ediz, The Ediz eccentric connectivity index of nanotubes and nanotori, Optoelectron. Adv.Mater.R-C, 4(11), (2010), 1847-1848.
17. A. R. Ashrafi, T. Došlic and M. Saheli, The eccentric connectivity index of TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem., 65 (2011), 221–230.
18. M. Saheli and A.R. Ashrafi, The eccentric connectivity index of armchair polyhex nanotubes, Macedonian Journal of Chemistry and Chemical Engineering, 29 (2010), 71-75.
Volume 2, 1-2
June 2012
Pages 1-8
  • Receive Date: 04 November 2011
  • Revise Date: 13 April 2012
  • Accept Date: 16 May 2012
  • Publish Date: 01 June 2012