Let $ G $ be a finite simple graph. The Sombor index of $ G $ is defined as $ \sum\nolimits_{uv\in E(G)} \sqrt{d_{u}^{2}+d_{v}^{2}} $ where $d_{u}$ and $d_{v}$ represent the degrees of vertices $ u$ and $v$ in $ G $, respectively. The sum of the absolute values of the adjacency eigenvalues defines the energy of a graph. This paper aims to enhance the current connections between the Sombor index and the energy of graphs. Additionally, we provide some upper bounds for the Sombor index of triangle-free, square-free, $K_r$-free and tripartite graphs in terms of order, size and minimum degree.
Rouhani, S., Habibi, M., & Mehrpouya, M. A. (2024). On Sombor index of extremal graphs. Journal of Discrete Mathematics and Its Applications, 9(4), 335-344. doi: 10.22061/jdma.2024.11328.1101
MLA
Soheir Rouhani; Mohammad Habibi; Mohammad Ali Mehrpouya. "On Sombor index of extremal graphs", Journal of Discrete Mathematics and Its Applications, 9, 4, 2024, 335-344. doi: 10.22061/jdma.2024.11328.1101
HARVARD
Rouhani, S., Habibi, M., Mehrpouya, M. A. (2024). 'On Sombor index of extremal graphs', Journal of Discrete Mathematics and Its Applications, 9(4), pp. 335-344. doi: 10.22061/jdma.2024.11328.1101
VANCOUVER
Rouhani, S., Habibi, M., Mehrpouya, M. A. On Sombor index of extremal graphs. Journal of Discrete Mathematics and Its Applications, 2024; 9(4): 335-344. doi: 10.22061/jdma.2024.11328.1101