On Sombor index of extremal graphs

Document Type : Full Length Article

Authors

1 Department of Mathematics Tafresh University Tafresh

2 Tafresh University

Abstract

Let $ G $ be a finite simple graph. The Sombor index of $ G $ is
defined as $ \sum\nolimits_{uv\in E(G)} \sqrt{d_{u}^{2}+d_{v}^{2}} $
where $d_{u}$ and $d_{v}$ represent the degrees of vertices $ u$ and
$v$ in $ G $, respectively. The sum of the absolute values of the
adjacency eigenvalues defines the energy of a graph. This paper aims
to enhance the current connections between the Sombor index and the
energy of graphs. Additionally, we provide some upper bounds for the
Sombor index of triangle-free, square-free, $K_r$-free and
tripartite graphs in terms of order, size and minimum degree.

Graphical Abstract

On Sombor index of extremal graphs

Keywords

Main Subjects


[1] A. Aashtab, S. Akbari, S. Madadinia, M. Noei, F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022) 553–
559.https://doi.org/10.46793/match.88-3.553a
[2] S. Akbari, H. Alizadeh, M. Fakharan, M. Habibi, S. Rabizadeh, S. Rouhani, Some relations between
rank, vertex cover number and energy of graph, MATCH Commun. Math. Comput. Chem. 589
(2023) 653–664.https://doi.org/10.46793/match.89-3.653a
[3] S. Akbari, M. Habibi, S. Rabizadeh, Relations between energy and Sombor index, MATCH Commun. Math. Comput. Chem. 92 (2024) 425–435.https://doi.org/10.46793/match.92-2.425a
[4] S. Akbari, M. Habibi, S. Rouhani, A Note on an Inequality Between Energy and Sombor Index of a Graph, MATCH Commun. Math. Comput. Chem. f 90 (2023) 765–771.
https://doi.org/10.46793/match.90-3.765a
[5] O. Arizmendi, J. F. Hidalgo, O. Juarez-Romero, Energy of a vertex, Linear Algebra Appl. 557 (2018)
464–495. https://doi.org/10.1016/j.laa.2018.08.014
[6] H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math.
Comput. Chem. 87 (2022) 23–49.https://doi.org/10.46793/match.87-1.023c
[7] K. C. Das, A. S. C¸ evik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021) 140.
https://doi.org/10.3390/sym13010140
[8] S. Filipovski, Relations between the energy of graphs and other graph parameters, MATCH Commun. Math. Comput. Chem. f 87 (2022) 661–672.https://doi.org/10.46793/match.87-3.661f
[9] I. Gutman, Geometric approach to degreebased topological indices: Sombor indices, MATCH
Commun. Math. Comput. Chem. 86 (2021) 11–16.https://doi.org/10.1002/qua.27346
[10] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz. 103 (1978) 1–22.
[11] I. Gutman, N. K. Gursoy, A. G ¨ ursoy, A. ¨ Ulker, New bounds on Sombor index, Commun. Comb. ¨
Optim. 8 (2) (2023) 305–311.https://doi.org/10.22049/cco.2022.27600.1296
[12] I. Gutman, S. Zare Firoozabadi, J. A. de la Pena, J. Rada, On the energy of ˜
regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 43–442.
https://match.pmf.kg.ac.rs/electronic versions/Match57/n2/match57n2 435-442.pdf
[13] A. E. Hamza, A. Ali, On a conjecture regarding the exponential reduced Sombor index of chemical
trees, Discrete Math. Lett. 9 (2022) 107–110. https://doi.org/10.47443/dml.2021.s217
[14] S. Hayat, A. Rehman, On Sombor index of graphs with a given number of cut-vertices, MATCH
Commun. Math. Comput. Chem. 89 (2023) 437–450.https://doi.org/10.46793/match.89-2.437h
[15] B. Horoldagva, C. Xu, On Sombor Index of Graphs, MATCH Commun. Math. Comput. Chem. 86
(2021) 703–713. https://doi.org/10.47443/cm.2021.0006
[16] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.https://doi.org/10.1007/978-1-
4614-4220-2
[17] H. Liu, Multiplicative Sombor index of graphs, Discrete Math. Lett. 9 (2022) 80–
85.https://doi.org/10.47443/dml.2021.s213
[18] H. Liu, L. You, Z. Tang, J.B. Liu, On the reduced Sombor index and its
applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753.
https://match.pmf.kg.ac.rs/electronic versions/Match86/n3/match86n3 729-753.pdf
[19] J. A. Mendez-Berm ´ adez, R. Aguilar-S ´ anchez, E. D. Molina, J. M. Rodr ´ aguez, Mean Sombor index, ´
Discrete Math. Lett. 9 (2022) 18–25.https://doi.org/10.47443/dml.2021.s204
[20] M. R. Oboudi, The Mean Value of Sombor Index of Graphs, MATCH Commun. Math. Comput.
Chem. 89 (2023) 733-740.https://doi.org/10.46793/match.89-3.733o
[21] Ch. Phanjoubam, S. Mn Mawiong,A. M. Buhphang, On Sombor coindex of graphs, Commun.
Comb. Optim. 8 (2023) 513–529.https://doi.org/10.22049/cco.2022.27751.1343
[22] I. Reiman, Uber ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958) 269–273. ¨
[23] M. Selim Reja, S. Abu. Nayeem, On Sombor index and graph energy, MATCH Commun. Math.
Comput. Chem. 89 (2023) 451–466.https://doi.org/10.46793/match.89-2.451r
[24] P. Turan, Egy gr ´ afelm ´ eleti sz ´ elso ´ ert ´ ekfeladatr ´ ol, On an extremal problem in graph theory, in Hun- ´
garian, Mat. Fiz. Lapok 48 (1941) 436–452.https://bibliotekanauki.pl/articles/725575.pdf
[25] A. Ulker, A. G ¨ ursoy, N. K. G ¨ ursoy, I. Gutman, Relating graph energy and Sombor index, Discrete ¨
Math. Lett. 8 (2022) 6–9.https://doi.org/10.47443/dml.2021.0085
[26] A. Ulker, A. G ¨ ursoy, N. K. G ¨ ursoy, The energy and Sombor index of graphs, MATCH Commun. ¨
Math. Comput. Chem. 87 (2022) 51–58.https://doi.org/10.46793/match.87-1.051u
[27] Z. Yan, X. Zheng, J. Li, Some degree-based topological indices and (normalized Laplacian) energy
of graphs, Discrete Math. Lett. 11 (2023) 19–26.https://doi.org/10.47443/dml.2022.059
Volume 9, Issue 4
December 2024
Pages 335-344
  • Receive Date: 04 October 2024
  • Revise Date: 08 October 2024
  • Accept Date: 12 November 2024
  • Publish Date: 01 December 2024