[3] E. Ackelsberg, Z. Berhm, A. Chan, J. Mundinger, C. Tamon, Laplacian state transfer in coronas, Linear Algebra and its Application 506 (2016) 154–167.https://doi.org/10.1016/j.laa.2016.05.018
[4] A. Acuaviva, A. Chan, S. Eldridge, C. Godsil, M. How-chun-Lun, C. Tamon, E. Wright, X. Zhang, State transfer in complex quantum walks, Int. J. of Quantum Information 7(8) (2023) 14171427.https://doi.org/10.48550/arXiv.2301.01473
[7] E. Altman, K. R. Brown, G. Carleo, L.D. Carr, E. Demler, C. Chin, B.DeMarco, Sophia E Economou, Mark A Eriksson, Kai-Mei C Fu, etal., Quantumsimulators: Architectures and opportunities, PRX Quantum 2(2021).
https://doi.org/10.1103/prxquantum.2.017003
[8] T. M. Apostol, Modular Functions and Dirichlet series in Number Theory, second ed., Springer Verlag-New work, 1997.https://doi.org/10.1007/978-1-4612-0999-7
[9] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional quantum walks, In Proceedings of the 33rd ACM Symposium on The Theory of Computation (STOC 01) ACM, (2001) 37–49.
https://doi.org/10.1145/380752.380757
[10] R. J. Angeles-Canul, R. Norton, M. Opperman, C. Paribello, M. Russell, C. Tamon, On quantum perfect state transfer in weighted join graphs, International Journal of Quantum Information 7 (2009) 1429–1445.
https://doi.org/10.1142/s0219749909006103
[11] R. J. Angeles-Canul, R. Norton, M. Opperman, C. Paribello, M. Russell, C. Tamam, Perfect state transfer, integral circulants and join of graphs, Quantum Information and Computation, 10 (2010), 325–342.
https://doi.org/10.26421/qic10.3-4-10
[12] V. Anishchenko, S. J. Pellock, T. M. Chidyausiku, T. A. Ramelot, S. Ovchinnikov, J. Hao, Khushboo Bafna, C. Norn, A. Kang, A. K. Bera, et al., De novo protein design by deep network hallucination, Nature 600 (2021), 547–552.
https://doi.org/10.1038/s41586-021-04184-w
[15] M. Arezoomand, B. Taeri, On the characteristic polynomial of n-Cayley digraphs, Electronic Journal of Combinatorics 20 (2013).
https://doi.org/10.37236/3105
[19] I. Sh. Averbukh, N. Perelman, Fractional revivals: Universality in the longterm evolution of quantum wave packets beyond the correspondence principle dynamics. Physics Letters A 139 (1989) 449–453.
https://doi.org/10.1016/0375-9601(89)90943-2
[20] B.Baaquie, Quantumfinance: PathintegralsandHamiltoniansforoptionsandinterestrates, Cambridge University Press (2007). https://api.DT0400.9780511262265 A23690789
[21] R. Bachman, E. Fredette, J. Fuller, M. Landry, M. C. Opperman, C. Tamon, A. Tollefson, perfect state transfer on quotient graphs, Quantum information and computation 12 (2012) 293–313.
https://doi.org/10.26421/qic12.3-4-9
[23] L. Banchi, G. Coutinho, C. Godsil, S. Severini, Pretty good state transfer in qubit chains- the Heisenberg Hamiltonian, Journal of Mathematical Physics 58 (2017) 032202.
https://doi.org/10.1063/1.4978327
[25] M. Baˇsi´c, M. Petkovi´c, Some classes of integral circulant graphs either allowing or not allowing Perfect state transfer, Applied Mathematics Letters 22 (2009) 1609–1615.
https://doi.org/10.1016/j.aml.2009.04.007
[26] M. Baˇsi´c, M. Petkovi´c, Perfect state transfer in integral circulant graphs of non-square-free order, Linear Algebra and its Application 433 (2010) 149–163.
https://doi.org/10.1016/j.laa.2010.01.042
[28] S. Basu, J. Born, A. Bose, S. Capponi, D. Chalkia, T. A. Chan, H. Doga, M. Goldsmith, T. Gujarati, A. Guzman-Saenz, et al., Towards quantum-enabled cell-centric therapeutics, arXiv preprint arXiv 2307.05734, (2023).
https://doi.org/10.48550/arXiv.2307.05734
[29] C.H.Bennett, G.Brassard, C. Cr´epeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-Podolsky-Rosen channels, Physical Review Letters 70 (1993).
https://doi.org/10.1103/PhysRevLett.70.1895
[35] P. Bryant, G. Pozzati, W. Zhu, A. Shenoy, P. Kundrotas, A. Elofsson, Predicting the structure of large protein complexes using alphafold and Monte Carlo tree search, Nature Communications, 13 (2022).
https://doi.org/10.1038/s41467-022-33729-4
[36] S. Cameron, S. Fehrenbach, L. Granger, O. Hennigh, S. Shrestha, C. Tamon, Universal state transfer on graphs, Linear Algebra and its Applications 455 (2014) 115–142.
https://doi.org/10.1016/j.laa.2014.05.004
[37] X. Cao, B. Chen, S. Ling, Perfect state transfer on Cayley graph over dihedral groups: the nonnormal case, Electronic Journal of Combinatorics 27 (2020).
https://doi.org/10.37236/9184
[42] A. Casaccino, S. Lioyd, S. Mancini, S. Severini, Quantum state transfer through a qubit network with energy shifts and fluctuations, International Journal of Quantum information 7 (2009) 14171427.
https://doi.org/10.48550/arXiv.0904.4510
[43] P. A. Casares, R. Campos, M. A. Martin-Delgado, QFold: quantum walks and deep learning to solve protein folding, Quantum Science and Technology (2021).
https://doi.org/10.1088/20589565/ac4f2f
[44] M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K.Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum algorithms, Nature Reviews Physics 3 (2021) 625–644.
https://doi.org/10.1038/s42254-021-00348-9
[45] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, Challenges and opportunities in quantum machine learning, Nature Computational Science (2022) 567–576.
https://doi.org/10.1038/s43588-022-00311-3
[46] A. Chan, W. Drazen, O. Eisenberg, M. Kempton, G. Lippner, Pretty good quantum fractional revival in paths and cycles, Algebraic Combinatorics 4 (2021) 989–1004.
https://doi.org/10.5802/alco.189
[54] G. Coutinho, C. Godsil, K. Guo, F. Vanhove, Perfect state transfer On distance regular graphs and association schemes, Linear Algebra and its Applications 478 (2015) 108–130.
https://doi.org/10.1016/j.laa.2015.03.024
[59] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, P. Zoller, Practical quantum advantage in quantum simulation, Nature 607 (2022) 667–676.
https://doi.org/10.1038/s41586022-04940-6
[60] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J. deHaas, N. Bethel, et al., Robust deep learning-based protein sequence design using proteinmpnn, Science 378 (2022) 49–56.
https://doi.org/10.1126/science.add2187
[61] P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete 57 (1981) 159–179.
https://doi.org/10.1007/bf00535487
[65] V. E. Elfving, B. W. Broer, M. Webber, J. Gavartin, M. D. Halls, K. P. Lorton, A. Bochevarov, How will quantum computers provide an industrially relevant computational advantage in quantum chemistry, arXiv preprint arXiv:2009.12472, (2020).
https://doi.org/10.48550/arXiv.2009.12472
[73] F. F. Flother, P. F. Griffin, How can quantum technologies be applied in healthcare, medicine and the life sciences, Research Directions: Quantum Technologies 1 (2023).
https://doi.org/10.1017/qut.2023.1
[80] C. Godsil, K. Guo, M. Kempton, G. Lippner, F. Munch, State transfer in strongly regular graphs with an edge perturbation, Journal of Combinatorial Theory, Series A 172 (2020).
https://doi.org/10.1016/j.jcta.2019.105181
[82] J. J. Goings, A. White, J. Lee, C. S. Tautermann, M. Degroote, C. Gidney, T. Shiozaki, R. Babbush, N. C. Rubin, Reliably assessing the electronic structure of cytochrome p450 on today’s classical computers and tomorrow’s quantum computers, Proceedings of the National Academy of Sciences 119 (2022).
https://doi.org/10.48550/arXiv.2202.01244
[86] I. R. Humphreys, J. Pei, M. Baek, A. Krishnakumar, I. Anishchenko, S. Ovchinnikov, J. Zhang, T. J. Ness, S. Banjade, S. R. Bagde, et al., Computed structures of core eukaryotic protein complexes, Science 374 (2021).
https://www.science.org/doi/10.1126/science.abm4805
[89] M. A. Jafarizadeh, R. Sufiani, M. Azimi, F. Eghbalifam, perfect state transfer over interacting boson networks associated with group schemes, Quantum information processing 11 (2012) 171-187.
https://doi.org/10.1007/s11128-011-0237-y
[90] A. Jamali, Theory of Finite Groups, Mobtakeran Publications-Tehran (2011).
[91] N. Johnston, S. Kirkland, S. Plosker, R. Storey, X. Zhang, Perfect quantum state transfer using Hadamard diagonalizable graphs, Linear Algebra and Its Applications 531 (2017) 375-398. https://doi.org/10.1016/j.laa.2017.05.037 [92] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. ˇ Z´ıdek, A. Potapenko, et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583-589.
https://doi.org/10.1038/s41586-021-03819-2
[93] M. Larocca, N. Ju, D. Garc´ ıa-Mart´ ın, P. J. Coles, M. Cerezo, Theory of overparametrization in quantum neural networks, Nature Computational Science 3 542 (2023).
https://doi.org/10.1038/s43588-023-00467-6
[94] J. Li, M. Alam, C. M. Sha, J. Wang, N. V. Dokholyan and S. Ghosh, Invited: Drug Discovery Approaches using Quantum Machine Learning, 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, (2021),1356-1359, doi: 10.1109/DAC18074.2021.9586268.
https://doi.org/10.1109/DAC18074.2021.9586268
[100] M. Kempton, G. Lippner, and S.-T. Yau, Pretty good quantum state transfer in symmetric spin networks via magnetic field, Quantum Information Processing 16 (23) (2017).
https://doi.org/10.1007/s11128-017-1658-z
[101] V. Kendom, C. Tamon, perfect state transfer in quantum walks on graphs, Computational and Theoretical Nanoscience 8(3) (2011) 422-433. extension://efaidnbmnnnibpcajpcglclefindmkaj/https://lin-web.clarkson.edu/ dir/kt.pdf chromectamon/ps
[104] S. Kubota and E. Segawa, perfect State transfer in Grover walks between state associated to vertices of a graph, Linear Algebra and Its Applications 646 (2022) 238-251.
https://doi.org/10.1016/j.laa.2022.04.006
[108] G. Mograby, M. Derevyagin, G. Dunne, A. Teplyaev, Spectra of perfect state transfer Hamiltonians on fractal-like graphs, arxiv preprint arxiv: 2003. 11190 (2020).
https://doi.org/10.48550/arXiv.2003.11190
[109] H. Miki, S. Tsujimoto, L. Vinet, perfect state transfer in two dimensions and the bivariate dual-Hahn Polynomials, Progress of Theoretical and Experimental Physics 2022 (2022).
https://doi.org/10.1093/ptep/ptac069
[110] D. Niraula, J. Jamaluddin, M. M. Matuszak, R. K. T. Haken, I. E. Naqa, Quantum deep reinforcement learning for clinical decision support in oncology: Application to adaptive radiotherapy, Scientific Reports 11 (2021).
https://doi.org/10.1038/s41598-021-02910-y
[111] J. Pakela, Quantum Inspired Machine Learning Algorithms for Adaptive Radiotherapy. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, (2021).
https://dx.doi.org/10.7302/2999
[113] D. T. Paik, S. Cho, L. Tian, H. Y. Chang, J. C. Wu, Single-cell RNA sequencing in cardiovascular development, disease and medicine, Nature Reviews Cardiology 17 (2020) 457-473.
https://doi.org/10.1038/s41569-020-0359-y
[118] H. Pal, B. Bhattacharjya, Pretty good state transfer on circulant graphs, Electronic Journal of Combinatorics 24 (2017).
https://doi.org/10.37236/6388
[123] A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P. Cahill, B. V. Nahed, W. T. Curry, R. L. Martuza, et al., Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma, Science 344 (2014) 1396-401.
https://doi.org/10.1126/science.1254257
[124] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger, P. J. Coles, Absence of barren plateaus in quantum convolutional neural networks, Physical Review X 11 (2021).
https://doi.org/10.48550/arXiv.2011.02966
[125] M. Petkovi´c, M. Baˇsi´c, Further results on the perfect state transfer in integral circulant graphs, Computers and Mathematics with Applications 61 (2011) 300- 312.
https://doi.org/10.1016/j.camwa.2010.11.005
[126] A. N. Pinto, N. A. Silva, ´ A. J. Almeida and N. J. Muga, Using quantum technologies to improve fiber optic communication systems, IEEE Communications Magazine 51 (2013).
https://doi.org/10.1109/MCOM.2013.6576337
[127] M.Riebe,H.H¨affner, C.Roos, W.H¨ansel, J.Benhelm, G.Lancaster, T.K¨orber, C.Becher, F.Schmidt Kaler, D. James, R. Blatt, Deterministic quantum teleportation with atoms, Nature 429 (2004) 734737.
https://doi.org/10.1038/nature02570
[128] H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, N. Gisin, Long distance quantum teleportation in a quantum relay configuration, Physical Review Letters 92 (2004).
https://doi.org/10.1103/PhysRevLett.92.047904
[129] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, M. Troyer, Elucidating reaction mechanisms on quantum computers, Proceedings of the National Academy of Sciences 114 (2017).
https://doi.org/10.48550/arXiv.1605.03590
[131] M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.
[133] J. T. Seeley, M. J. Richard, P. J. Love, The Bravyi-Kitaev transformation for quantum computation of electronic structure, Chemical physics 137 (2012) 224109.
https://doi.org/10.48550/arXiv.1208.5986
[134] A. Segerstolpe, A. Palasantza, P. Eliasson, E. M. Andersson, A. C. Andr´easson, X. Sun, S. Picelli, A. Sabirsh, M. Clausen, M. K. Bjursell, et al., Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes, Cell metabolism 24 (2016) 593-607.
https://doi.org/10.1016/j.cmet.2016.08.020
[136] J. E. Shin, A. J. Riesselman, A. W. Kollasch, C. McMahon, E. Simon, C. Sander, A. Manglik, A. C. Kruse, D. S. Marks, Protein design and variant prediction using autoregressive generative models, Nature communications 12 (2021).
https://doi.org/10.1038/s41467-021-22732-w
[138] B. Steinberg, Representation theory of finite Groups, University, Springer, New York, 2012.
[139] F. Tacchino, A. Chiesa, S. Carretta, D. Gerace, Quantum computers as universal quantum simulators: state-of-the-art and perspectives, Advanced Quantum Technologies, 3 (2020).
https://doi.org/10.48550/arXiv.1907.03505
[141] I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A. Rotem, C. Rodman, C. Lian, G. Murphy, et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq, Science 352 (2016) 189-96.
https://doi.org/10.1126/science.aad0501
[142] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P.V. Coveney, F. Mintert, F. Wilhelm, P.J. Love, The Bravyi-Kitaev transformation: Properties and applications, International Journal of Quantum Chemistry 115 (2015) 1431-1441.
https://doi.org/10.1002/qua.24969
[143] N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins, Z. Jiang, J. R. Mc-Clean, R. Babbush, M. Head-Gordon, K. B. Whaley, Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices, arXiv e-prints, arXiv:1809.05523 (2018).
https://doi.org/10.48550/arXiv.1809.05523
[148] J. Wagner, M. A. Rapsomaniki, S. Chevrier, T. Anzeneder, C. Langwieder, A. Dykgers, M. Rees, A. Ramaswamy,S.Muenst, S.D.Soysal, et al., A single cell atlas of the tumor and immune ecosystem of human breast cancer. Cell, 177 (2019) 1330-1345.
https://doi.org/10.1016/j.cell.2019.03.005
[151] J. Wang, S. Lisanza, D. Juergens, D. Tischer, J. L. Watson, K. M. Castro, R. Ragotte, A. Saragovi, L. F. Milles, M. Baek, et al., Scaffolding protein functional sites using deep learning, Science3 77 (2022) 387-394. https://doi.org/ 10.1126/science.abn2100
[154] B. I. M. Wicky, L. F. Milles, A. Courbet, R. J. Ragotte, J. Dauparas, E. Kinfu, S. Tipps, R.D. Kibler, M. Baek, F. DiMaio, et al., Hallucinating symmetric protein assemblies, Science 378 (2022) 56-61. https://doi.org/ 10.1126/science.add1964
[159] J. Zhou, C. Bu, J. Shen, Some results for the periodicity and perfect state transfer, Electron, Journal of Combinatorial Theory, Series A 18 (2011).
https://doi.org/10.37236/671
[161] Z. Zimboras, M. Faccin, Z. K´ad´ar, J. Whitfield, B. Lanyon, J. Biamonte, Quantum Transport Enhancement by Time-Reversal Symmetry Breaking, Scientific Reports 3 2361 (2013).
https://doi.org/10.1038/srep02361