A review on perfect state transfer and pretty good state transfer of graphs

Document Type : Review Article

Authors

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran, I. R. Iran

Abstract

In this study, we review two significant topics: perfect State Transfer (PST) and Pretty Good State Transfer (PGST). These concepts involve designing interactions within a chain of spins on graph structures of networks, enabling a quantum state initially placed at one end to be perfectly or pretty transferred to the opposite end within a specified timeframe. PST and PGST play crucial roles in applications such as quantum information processing, quantum communication networks, and quantum chemistry

Graphical Abstract

A review on perfect state transfer and pretty good state transfer of graphs

Keywords

Main Subjects


[1] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, S. Woerner, The power of quantum neural networks, Nature Computational Science 1 (2021) 403–409. https://doi.org/10.1038/s43588-02100084-1
[2] A. A. Abushgra, Variations of QKD protocols based on conventional system measurements: A literature review, Cryptography 6 (2022). https://doi.org/10.3390/cryptography6010012
[3] E. Ackelsberg, Z. Berhm, A. Chan, J. Mundinger, C. Tamon, Laplacian state transfer in coronas, Linear Algebra and its Application 506 (2016) 154–167.https://doi.org/10.1016/j.laa.2016.05.018
[4] A. Acuaviva, A. Chan, S. Eldridge, C. Godsil, M. How-chun-Lun, C. Tamon, E. Wright, X. Zhang, State transfer in complex quantum walks, Int. J. of Quantum Information 7(8) (2023) 14171427.https://doi.org/10.48550/arXiv.2301.01473
[5] Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks, Physical Review A 48 (1993). https://doi.org/10.1103/physreva.48.1687
[6] K. Akash, B. Bhattacharjya, Perfect state transfer on Cayley graphs over a group of order 8n, arXiv preprint arXiv:2405.02122 (2024). https://doi.org/10.48550/arXiv.2405.02122
[7] E. Altman, K. R. Brown, G. Carleo, L.D. Carr, E. Demler, C. Chin, B.DeMarco, Sophia E Economou, Mark A Eriksson, Kai-Mei C Fu, etal., Quantumsimulators: Architectures and opportunities, PRX Quantum 2(2021). https://doi.org/10.1103/prxquantum.2.017003
[8] T. M. Apostol, Modular Functions and Dirichlet series in Number Theory, second ed., Springer Verlag-New work, 1997.https://doi.org/10.1007/978-1-4612-0999-7
[9] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous. One-dimensional quantum walks, In Proceedings of the 33rd ACM Symposium on The Theory of Computation (STOC 01) ACM, (2001) 37–49. https://doi.org/10.1145/380752.380757
[10] R. J. Angeles-Canul, R. Norton, M. Opperman, C. Paribello, M. Russell, C. Tamon, On quantum perfect state transfer in weighted join graphs, International Journal of Quantum Information 7 (2009) 1429–1445. https://doi.org/10.1142/s0219749909006103
[11] R. J. Angeles-Canul, R. Norton, M. Opperman, C. Paribello, M. Russell, C. Tamam, Perfect state transfer, integral circulants and join of graphs, Quantum Information and Computation, 10 (2010), 325–342. https://doi.org/10.26421/qic10.3-4-10
[12] V. Anishchenko, S. J. Pellock, T. M. Chidyausiku, T. A. Ramelot, S. Ovchinnikov, J. Hao, Khushboo Bafna, C. Norn, A. Kang, A. K. Bera, et al., De novo protein design by deep network hallucination, Nature 600 (2021), 547–552. https://doi.org/10.1038/s41586-021-04184-w
[13] E. R. Anschuetz, H.-Y. Hu, J.L. Huang, and X. Gao, Interpretable quantum advantage in neural sequence learning, arXiv preprint arXiv:2209.14353, (2022). https://doi.org/10.1103/prxquantum.4.020338
[14] T. Anuradha, A. Patra, R. Gupta, A. Sende, Perfect transfer of arbitrary continuous variable state across optical waveguide lattices, (2023) 2306–13068. https://doi.org/10.48550/arXiv.2306.13068
[15] M. Arezoomand, B. Taeri, On the characteristic polynomial of n-Cayley digraphs, Electronic Journal of Combinatorics 20 (2013). https://doi.org/10.37236/3105
[16] M. Arezoomand, F. Shafiei, M. Ghorbani, Perfect state transfer on Cayley graphs over dicyclic groups, Linear Algebra and its Applications 639 (2022) 116–134. https://doi.org/10.1016/j.laa.2021.12.019
[17] M. Arezoomand, Perfect state transfer on semi-Cayley graphs over abelian groups, Linear and Multilinear Algebra 71 (2022) 2337–2353. https://doi.org/10.1080/03081087.2022.2101602
[18] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, M. Head-Gordon, Simulated quantum computation of molecular energies, Science 309 (2005) 1704–1707. https://doi.org/10.48550/arXiv.quantph/0604193
[19] I. Sh. Averbukh, N. Perelman, Fractional revivals: Universality in the longterm evolution of quantum wave packets beyond the correspondence principle dynamics. Physics Letters A 139 (1989) 449–453. https://doi.org/10.1016/0375-9601(89)90943-2
[20] B.Baaquie, Quantumfinance: PathintegralsandHamiltoniansforoptionsandinterestrates, Cambridge University Press (2007). https://api.DT0400.9780511262265 A23690789
[21] R. Bachman, E. Fredette, J. Fuller, M. Landry, M. C. Opperman, C. Tamon, A. Tollefson, perfect state transfer on quotient graphs, Quantum information and computation 12 (2012) 293–313. https://doi.org/10.26421/qic12.3-4-9
[22] A. Baiardi, M. Christandl, M. Reiher, Quantum Computing for Molecular Biology, ChemBioChem 24 (2023) e202300120. https://doi.org/10.48550/arXiv.2212.12220
[23] L. Banchi, G. Coutinho, C. Godsil, S. Severini, Pretty good state transfer in qubit chains- the Heisenberg Hamiltonian, Journal of Mathematical Physics 58 (2017) 032202. https://doi.org/10.1063/1.4978327
[24] M. Baˇsi´c, M. Petkovi´c, D. Stefanovi´c, Perfect State transfer in integral circulant graphs, Applied Mathematics Letters 22 (2009), 1117–1121. https://doi.org/10.1016/j.aml.2008.11.005
[25] M. Baˇsi´c, M. Petkovi´c, Some classes of integral circulant graphs either allowing or not allowing Perfect state transfer, Applied Mathematics Letters 22 (2009) 1609–1615. https://doi.org/10.1016/j.aml.2009.04.007
[26] M. Baˇsi´c, M. Petkovi´c, Perfect state transfer in integral circulant graphs of non-square-free order, Linear Algebra and its Application 433 (2010) 149–163. https://doi.org/10.1016/j.laa.2010.01.042
[27] M. Baˇsi´c, Characterization of quantum circulant networks having perfect state transfer, Quantum Information Processing 12 (2011) 345–364. https://doi.org/10.48550/arXiv.1104.1825
[28] S. Basu, J. Born, A. Bose, S. Capponi, D. Chalkia, T. A. Chan, H. Doga, M. Goldsmith, T. Gujarati, A. Guzman-Saenz, et al., Towards quantum-enabled cell-centric therapeutics, arXiv preprint arXiv 2307.05734, (2023). https://doi.org/10.48550/arXiv.2307.05734
[29] C.H.Bennett, G.Brassard, C. Cr´epeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-Podolsky-Rosen channels, Physical Review Letters 70 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
[30] A. Bernasconi, C. Godsil, S. Severini, Quantum networks on cubelike graphs, Physical Review A 78 (2008). https://doi.org/10.1103/PhysRevA.78.052320
[31] M. Berry, I. Marzoli, W. Schleich, Quantum carpets, Carpets of light, Physics World 14 (2001) 39. https://doi.org/10.1088/2058-7058/14/6/30
[32] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549 (2017). https://doi.org/10.1038/nature23474
[33] S. Bose, Quantum communication through an unmodulated spin chain, Physical Review Letters 91 (2003). https://doi.org/10.1103/PhysRevLett.91.207901
[34] C. Bommel, Pretty good state transfer and minimal polynomials, arxiv preprint: 2010, (2020). https://doi.org/10.48550/arXiv.2010.06779
[35] P. Bryant, G. Pozzati, W. Zhu, A. Shenoy, P. Kundrotas, A. Elofsson, Predicting the structure of large protein complexes using alphafold and Monte Carlo tree search, Nature Communications, 13 (2022). https://doi.org/10.1038/s41467-022-33729-4
[36] S. Cameron, S. Fehrenbach, L. Granger, O. Hennigh, S. Shrestha, C. Tamon, Universal state transfer on graphs, Linear Algebra and its Applications 455 (2014) 115–142. https://doi.org/10.1016/j.laa.2014.05.004
[37] X. Cao, B. Chen, S. Ling, Perfect state transfer on Cayley graph over dihedral groups: the nonnormal case, Electronic Journal of Combinatorics 27 (2020). https://doi.org/10.37236/9184
[38] X. Cao, K. Feng, Pretty good state transfer on Cayley graph over dihedral groups, Discrete Mathematics, 343 (2020). https://doi.org/10.1016/j.disc.2019.111636
[39] X. Cao, K. Feng, Perfect state transfer on Cayley graphs over dihedral groups, Linear and Multilinear Algebra 69 (2021) 343–360. https://doi.org/10.1080/03081087.2019.1599805
[40] X.Coa, K.Feng, Y-Y. Tan, Perfect state transfer on weighted abelian Cayley graphs, Chinese Annals of Mathematics, Series B 42 (2027) 625–642. https://doi.org/10.1007/s11401-021-0283-4
[41] X. Cao, D. Wang, Pretty good state transfer on Cayley graphs over semi-dihedral groups, Linear and Multilinear Algebra 70 (2022) 5716–5731. https://doi.org/10.1080/03081087.2021.1926414
[42] A. Casaccino, S. Lioyd, S. Mancini, S. Severini, Quantum state transfer through a qubit network with energy shifts and fluctuations, International Journal of Quantum information 7 (2009) 14171427. https://doi.org/10.48550/arXiv.0904.4510
[43] P. A. Casares, R. Campos, M. A. Martin-Delgado, QFold: quantum walks and deep learning to solve protein folding, Quantum Science and Technology (2021). https://doi.org/10.1088/20589565/ac4f2f
[44] M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K.Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum algorithms, Nature Reviews Physics 3 (2021) 625–644. https://doi.org/10.1038/s42254-021-00348-9
[45] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, Challenges and opportunities in quantum machine learning, Nature Computational Science (2022) 567–576. https://doi.org/10.1038/s43588-022-00311-3
[46] A. Chan, W. Drazen, O. Eisenberg, M. Kempton, G. Lippner, Pretty good quantum fractional revival in paths and cycles, Algebraic Combinatorics 4 (2021) 989–1004. https://doi.org/10.5802/alco.189
[47] A. Chan, H. Zhan, Pretty good state transfer in discrete-time quantum walks, Journal of Physics A: Mathematical and Theoretical 56 (2023) 1751–8121. https://doi.org/10.1088/1751-8121/acc4f5
[48] W.Cheung,C.Godsil, Perfectstate transferincubelike graphs, Linear Algebra and its Applications 435 (2011) 2468–2474. https://doi.org/10.1016/j.laa.2011.04.022
[49] M. Christandl, N. Datta, A. Ekeyt, A. Landahl, Perfect state transfer in quantum spin networks, Physical Review letters 92 (2004). https://doi.org/10.1103/PhysRevLett.92.187902
[50] M. Christandl, N. Datta, T. Dorlas, A. Ekert, A. Kay, A. Landahl, Perfect transfer of arbitrary states in quantum spin networks, Physical Review A 71 (2005). https://doi.org/10.1103/PhysRevA.71.032312
[51] I. Cong, S. Choi, M. D. Lukin, Quantum convolutional neural networks, Nature Physics 15 (2019) 1273–1278. https://doi.org/10.1038/s41567-019-0648-8
[52] E. Connelly, N. Grammel, M. Kraut, L. Serazo, C. Tamon, Universality in perfect state transfer, Linear Algebra and its Applications 531 (2017) 576–532. https://doi.org/10.1016/j.laa.2017.06.015
[53] G. Coutinho, Quantum state transfer in graphs, PhD dissertation, University of Waterloo, 2014. https://208a19-a827-448b-bbc3-b12116d3eada/content
[54] G. Coutinho, C. Godsil, K. Guo, F. Vanhove, Perfect state transfer On distance regular graphs and association schemes, Linear Algebra and its Applications 478 (2015) 108–130. https://doi.org/10.1016/j.laa.2015.03.024
[55] G. Coutinho, H. Liu, No Laplacian perfect state transfer in trees, SIAM Journal on Discrete Mathematics 29 (2015) 2179–2188. https://doi.org/10.1137/140989510
[56] G. Coutinho, C. Godsil, Perfect state transfer in products and covers of graphs, Linear and Multi Linear Algebra 64 (2016) 235–246. https://doi.org/10.1080/03081087.2015.1033381
[57] G.Coutinho,K.Guo,C.Bommel, Pretty good state transfer between internal nodes of paths, Quantum information and computation 17 (2017) 825–830. https://doi.org/10.48550/arXiv.1611.09836
[58] G.Coutinho, E. Juliano, T. J. Spier, No perfect state transfer in trees with more than 3 vertices, arxiv preprint arxiv:2305-10199 (2023). https://doi.org/10.48550/arXiv.2305.10199
[59] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, P. Zoller, Practical quantum advantage in quantum simulation, Nature 607 (2022) 667–676. https://doi.org/10.1038/s41586022-04940-6
[60] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J. deHaas, N. Bethel, et al., Robust deep learning-based protein sequence design using proteinmpnn, Science 378 (2022) 49–56. https://doi.org/10.1126/science.add2187
[61] P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete 57 (1981) 159–179. https://doi.org/10.1007/bf00535487
[62] K.A. Dill, J.L. MacCallum, The protein-folding problem, 50yearson, Science338(2012)1042–1046. doi:10.1126/science.1219021. https://doi.org/10.1126/science.1219021
[63] O. Eisenberg, M. Kempton, G. Lippner, Pretty good quantum state transfer in asymmetric graphs via potential, Discrete Mathematics 342 (2019) 2821–2833. https://doi.org/10.1016/j.disc.2018.10.037
[64] A. Elaraby, Quantum medical images processing foundations and applications, IET Quantum Communication, 3 (2022) 201–213. https://doi.org/10.1049/qtc2.12049
[65] V. E. Elfving, B. W. Broer, M. Webber, J. Gavartin, M. D. Halls, K. P. Lorton, A. Bochevarov, How will quantum computers provide an industrially relevant computational advantage in quantum chemistry, arXiv preprint arXiv:2009.12472, (2020). https://doi.org/10.48550/arXiv.2009.12472
[66] P. S. Emani, J. Warrell, A. Anticevic, et al., Quantum computing at the frontiers of biological sciences, Nature Methods 18 (2021) 701–709. https://doi.org/10.48550/arXiv.1911.07127
[67] C. Facer, J. Twamley, J. Cresser, Quantum Cayley networks of the hypercube, Physical Review A (3) 77 (2008). https://doi.org/10.1103/PhysRevA.77.012334
[68] E. Farhi, S. Gutmann, Quantum computation and decision trees, Physical Review A (3) 58 (1998) 915–928. https://doi.org/10.48550/arXiv.quant-ph/9706062
[69] X. Fan, C. Godsil, Pretty good state transfer on double stars, Linear Algebra and its Applications 438 (2013) 2346–2358. https://doi.org/10.1016/j.laa.2012.10.006
[70] M. F. S. Ferreira, A. N. Pinto, H. H¨ubel, Quantum communications, Fiber and Integrated Optics (2020) 1–2. https://doi.org/10.1080/01468030.2020.1712536
[71] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21 (1982) 467–488. https://doi.org/10.1007/BF02650179
[72] F. F. Flother, The state of quantum computing applications in health and medicine. (2023). https://doi.org/10.48550/arXiv.2301.09106
[73] F. F. Flother, P. F. Griffin, How can quantum technologies be applied in healthcare, medicine and the life sciences, Research Directions: Quantum Technologies 1 (2023). https://doi.org/10.1017/qut.2023.1
[74] Y. Ge, B. Greenberg, O. Perez, C. Tamon, Perfect state transfer, graph products and equitable partitions, Quantum physics (2010). https://doi.org/10.1142/S0219749911007472
[75] C. Godsil, Periodic graphs, The Electronic Journal of Combinatorics 18 (2011). https://doi.org/10.37236/510
[76] C. Godsil, State transfer on graphs, Discrete Mathematics 312 (2012) 129–147. https://doi.org/10.1016/j.disc.2011.06.032
[77] C. Godsil, When can perfect state transfer occur, Electronic Journal of Linear Algebra 23 (2012) 877–890. https://doi.org/10.13001/1081-3810.1563
[78] C. Godsil, Real state transfer, (2017), arXiv:1710:04042. https://doi.org/10.48550/arXiv.1710.04042
[79] C. Godsil, S. Kirkland, S. Severini, J. Smith, Number-theoretic Nature of communication in Quantum Spin Systems, Physical Review Letters 109 (2012). https://doi.org/10.1103/PhysRevLett.109.050502
[80] C. Godsil, K. Guo, M. Kempton, G. Lippner, F. Munch, State transfer in strongly regular graphs with an edge perturbation, Journal of Combinatorial Theory, Series A 172 (2020). https://doi.org/10.1016/j.jcta.2019.105181
[81] C. Godsil, S. Late, Perfect state transfer on oriented graphs, Linear Algebra and its Applications 604 (2020) 278-292. https://doi.org/10.1016/j.laa.2020.06.025
[82] J. J. Goings, A. White, J. Lee, C. S. Tautermann, M. Degroote, C. Gidney, T. Shiozaki, R. Babbush, N. C. Rubin, Reliably assessing the electronic structure of cytochrome p450 on today’s classical computers and tomorrow’s quantum computers, Proceedings of the National Academy of Sciences 119 (2022). https://doi.org/10.48550/arXiv.2202.01244
[83] S. Gupta, S. Modgil, P. C. Bhatt, C. J. C. Jabbour, S. Kamble, Quantum computing led innovation for achieving a more sustainable COVID-19 healthcare industry, Technovation 120 (2022). https://doi.org/10.1016/j.technovation.2022.102544
[84] Y. T. Huang, J. D. Lin, H. Y. Ku, Y. N. Chen, Benchmarking quantum state transfer on quantum devices, Quantum Physics (2020). https://doi.org/10.1103/PhysRevResearch.3.023038
[85] H. Y. Huang, R.Kueng, andJ.Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16 1050 (2020). https://doi.org/10.1038/s41567-020-0932-7
[86] I. R. Humphreys, J. Pei, M. Baek, A. Krishnakumar, I. Anishchenko, S. Ovchinnikov, J. Zhang, T. J. Ness, S. Banjade, S. R. Bagde, et al., Computed structures of core eukaryotic protein complexes, Science 374 (2021). https://www.science.org/doi/10.1126/science.abm4805
[87] B. Huppert, Character Theory of Finite Groups, De Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin, 25 (1998). https://doi.org/10.1515/9783110809237
[88] M. A. Jafarizadeh, R. Sufiani, Prefect state transfer over distance- regular spin networks, Physical Review A 77 (2008). https://doi.org/10.48550/arXiv.0709.0755
[89] M. A. Jafarizadeh, R. Sufiani, M. Azimi, F. Eghbalifam, perfect state transfer over interacting boson networks associated with group schemes, Quantum information processing 11 (2012) 171-187. https://doi.org/10.1007/s11128-011-0237-y
[90] A. Jamali, Theory of Finite Groups, Mobtakeran Publications-Tehran (2011).
[91] N. Johnston, S. Kirkland, S. Plosker, R. Storey, X. Zhang, Perfect quantum state transfer using Hadamard diagonalizable graphs, Linear Algebra and Its Applications 531 (2017) 375-398. https://doi.org/10.1016/j.laa.2017.05.037 [92] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. ˇ Z´ıdek, A. Potapenko, et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583-589. https://doi.org/10.1038/s41586-021-03819-2
[93] M. Larocca, N. Ju, D. Garc´ ıa-Mart´ ın, P. J. Coles, M. Cerezo, Theory of overparametrization in quantum neural networks, Nature Computational Science 3 542 (2023). https://doi.org/10.1038/s43588-023-00467-6
[94] J. Li, M. Alam, C. M. Sha, J. Wang, N. V. Dokholyan and S. Ghosh, Invited: Drug Discovery Approaches using Quantum Machine Learning, 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, (2021),1356-1359, doi: 10.1109/DAC18074.2021.9586268. https://doi.org/10.1109/DAC18074.2021.9586268
[95] J. Liu, F. Tacchino, J. R. Glick, L. Jiang, A. Mezzacapo, Representation learning via quantum neural tangent kernels, PRX Quantum (2022). https://doi.org/10.48550/arXiv.2111.04225
[96] A. Kay, Perfect state transfer: Beyond nearest-neighbor couplings, Physical Review A 73 (2006). https://doi.org/10.48550/arXiv.quant-ph/0509065
[97] A. Kay, Basics of communication through quantum networks, Physical Review A 84 (2011). https://doi.org/10.48550/arXiv.1102.2338
[98] A. Kay, A Review of perfect, efficient, state transfer and its application as a constructive tool, Quantum Information 8 (2010) 641-676. https://doi.org/10.48550/arXiv.0903.4274
[99] J.Kempe. Quantum random walk- an introductory overview, Contemporary Physics 44 (2003). https://doi.org/10.48550/arXiv.quant-ph/0303081
[100] M. Kempton, G. Lippner, and S.-T. Yau, Pretty good quantum state transfer in symmetric spin networks via magnetic field, Quantum Information Processing 16 (23) (2017). https://doi.org/10.1007/s11128-017-1658-z
[101] V. Kendom, C. Tamon, perfect state transfer in quantum walks on graphs, Computational and Theoretical Nanoscience 8(3) (2011) 422-433. extension://efaidnbmnnnibpcajpcglclefindmkaj/https://lin-web.clarkson.edu/ dir/kt.pdf chromectamon/ps
[102] A. Khalilipour, M. Ghorbani, perfect state transfer on Cayley graphs over groups, Discrete Mathematics and Its Applications 9 49-62 (2024). https://doi.org/10.22061/jdma.2024.10551.1066
[103] S. Kirkland, Sensitivity analysis of perfect state transfer in quantum spin networks, Linear Algebra and its Applications 472 (2015) 1-30. https://doi.org/10.1016/j.laa.2015.01.013
[104] S. Kubota and E. Segawa, perfect State transfer in Grover walks between state associated to vertices of a graph, Linear Algebra and Its Applications 646 (2022) 238-251. https://doi.org/10.1016/j.laa.2022.04.006
[105] Y. Li, X. Liu, S. Zhang, S.Zhou, perfect State transfer in NEPS of complete graphs, Discrete Applied Mathematics 289 (2021) 98-114. https://doi.org/10.48550/arXiv.2010.03198
[106] G. Lou, X. Cao, D. Wang, X. Wu, perfect quantum state transfer on Cayley graphs over semi-dihedral groups, Linear and Multilinear Algebra (2021). https://doi.org/10.1080/03081087.2021.1954585
[107] S. Mazurenko, Z. Prokop, J. Damborsky, Machine learning in enzyme engineering, ACS Catalysis 10 (2019) 1210-1223. https://doi.org/10.1021/acscatal.9b04321
[108] G. Mograby, M. Derevyagin, G. Dunne, A. Teplyaev, Spectra of perfect state transfer Hamiltonians on fractal-like graphs, arxiv preprint arxiv: 2003. 11190 (2020). https://doi.org/10.48550/arXiv.2003.11190
[109] H. Miki, S. Tsujimoto, L. Vinet, perfect state transfer in two dimensions and the bivariate dual-Hahn Polynomials, Progress of Theoretical and Experimental Physics 2022 (2022). https://doi.org/10.1093/ptep/ptac069
[110] D. Niraula, J. Jamaluddin, M. M. Matuszak, R. K. T. Haken, I. E. Naqa, Quantum deep reinforcement learning for clinical decision support in oncology: Application to adaptive radiotherapy, Scientific Reports 11 (2021). https://doi.org/10.1038/s41598-021-02910-y
[111] J. Pakela, Quantum Inspired Machine Learning Algorithms for Adaptive Radiotherapy. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, (2021). https://dx.doi.org/10.7302/2999
[112] R. Or´us, S. Mugel, E. Lizaso, Quantum computing for finance: Overview and prospects, Reviews in Physics 4 (2019) 2405-4283. https://doi.org/10.1016/j.revip.2019.100028
[113] D. T. Paik, S. Cho, L. Tian, H. Y. Chang, J. C. Wu, Single-cell RNA sequencing in cardiovascular development, disease and medicine, Nature Reviews Cardiology 17 (2020) 457-473. https://doi.org/10.1038/s41569-020-0359-y
[114] H. Pal, B. Bhattacharjya, perfect state transfer on gcd- graphs, Linear MultiLinear Algebra 65 (2017) 2245- 2256. https://doi.org/10.1080/03081087.2016.1267105
[115] H. Pal, B. Bhattacharjya, perfect state transfer on NEPS of the Path on three vertices, Discrete Mathematics 339 (2016) 831- 838. https://doi.org/10.1016/j.disc.2015.10.027
[116] H. Pal, B. Bhattacharjya, Pretty good state transfer on some NEPS, arxiv preprint arxiv: 1604. 08858, (2016). https://doi.org/10.1016/j.disc.2016.11.026
[117] H. Pal, B. Bhattacharjya, A class of gcd- graphs having perfect state transfer, Electron, Notes on Discrete Mathematics 53 (2016) 319-329. https://doi.org/10.48550/arXiv.1601.07398
[118] H. Pal, B. Bhattacharjya, Pretty good state transfer on circulant graphs, Electronic Journal of Combinatorics 24 (2017). https://doi.org/10.37236/6388
[119] H.Pal,More circulant graphs exhibiting Pretty good state transfer, Discrete Mathematics 341(2018) 889- 895. https://doi.org/10.1016/j.disc.2017.12.012
[120] H. Pal, Laplacian state transfer on graphs with an edge Perturbation between twin vertices, Discrete Mathematics 345 (2022). https://doi.org/10.48550/arXiv.2109.05306
[121] A. Parakh, Quantum teleportation with one classical bit, Scientific Reports 12 (2022). https://doi.org/10.1038/s41598-022-06853-w
[122] J. Parker, C. Stroud Jr, Coherence and decay of Rydberg wave packets, Physical Review Letters 56 1986 716. https://doi.org/10.1103/PhysRevLett.56.716
[123] A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P. Cahill, B. V. Nahed, W. T. Curry, R. L. Martuza, et al., Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma, Science 344 (2014) 1396-401. https://doi.org/10.1126/science.1254257
[124] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger, P. J. Coles, Absence of barren plateaus in quantum convolutional neural networks, Physical Review X 11 (2021). https://doi.org/10.48550/arXiv.2011.02966
[125] M. Petkovi´c, M. Baˇsi´c, Further results on the perfect state transfer in integral circulant graphs, Computers and Mathematics with Applications 61 (2011) 300- 312. https://doi.org/10.1016/j.camwa.2010.11.005
[126] A. N. Pinto, N. A. Silva, ´ A. J. Almeida and N. J. Muga, Using quantum technologies to improve fiber optic communication systems, IEEE Communications Magazine 51 (2013). https://doi.org/10.1109/MCOM.2013.6576337
[127] M.Riebe,H.H¨affner, C.Roos, W.H¨ansel, J.Benhelm, G.Lancaster, T.K¨orber, C.Becher, F.Schmidt Kaler, D. James, R. Blatt, Deterministic quantum teleportation with atoms, Nature 429 (2004) 734737. https://doi.org/10.1038/nature02570
[128] H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, D. Collins, N. Gisin, Long distance quantum teleportation in a quantum relay configuration, Physical Review Letters 92 (2004). https://doi.org/10.1103/PhysRevLett.92.047904
[129] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, M. Troyer, Elucidating reaction mechanisms on quantum computers, Proceedings of the National Academy of Sciences 114 (2017). https://doi.org/10.48550/arXiv.1605.03590
[130] N. Saxena, S. Severini, I. Shparlinski, Parameters of Integral circulant graphs and Periodic quantum dynamics, International Journal of Quantum Information 5 (2007) 417- 430. https://doi.org/10.48550/arXiv.quant-ph/0703236
[131] M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.
[132] M. Schuld and N. Killoran, Is quantum advantage the right goal for quantum machine learning, PRXQuantum(2022). https://doi.org/10.48550/arXiv.2203.01340
[133] J. T. Seeley, M. J. Richard, P. J. Love, The Bravyi-Kitaev transformation for quantum computation of electronic structure, Chemical physics 137 (2012) 224109. https://doi.org/10.48550/arXiv.1208.5986
[134] A. Segerstolpe, A. Palasantza, P. Eliasson, E. M. Andersson, A. C. Andr´easson, X. Sun, S. Picelli, A. Sabirsh, M. Clausen, M. K. Bjursell, et al., Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes, Cell metabolism 24 (2016) 593-607. https://doi.org/10.1016/j.cmet.2016.08.020
[135] K. Setia, J. D. Whitfield, Bravyi-Kitaev superfast simulation of electronic structure on a quantum computer, Journal of Chemical Physics 148 (2018). https://doi.org/10.48550/arXiv.1712.0044
[136] J. E. Shin, A. J. Riesselman, A. W. Kollasch, C. McMahon, E. Simon, C. Sander, A. Manglik, A. C. Kruse, D. S. Marks, Protein design and variant prediction using autoregressive generative models, Nature communications 12 (2021). https://doi.org/10.1038/s41467-021-22732-w
[137] J. F. Sherson, H. Krauter, E. S. Polzik, Quantum teleportation between light and matter, Nature 443 (2006) 557-560. https://doi.org/10.1038/nature05136
[138] B. Steinberg, Representation theory of finite Groups, University, Springer, New York, 2012.
[139] F. Tacchino, A. Chiesa, S. Carretta, D. Gerace, Quantum computers as universal quantum simulators: state-of-the-art and perspectives, Advanced Quantum Technologies, 3 (2020). https://doi.org/10.48550/arXiv.1907.03505
[140] Y-Y. Tan, K. Feng, X-Cao, perfect state transfer on abelian Cayley graphs, Linear Algebra and its Applications, 563 (2019) 331-352. https://doi.org/10.1016/j.laa.2018.11.011
[141] I. Tirosh, B. Izar, S. M. Prakadan, M. H. Wadsworth, D. Treacy, J. J. Trombetta, A. Rotem, C. Rodman, C. Lian, G. Murphy, et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq, Science 352 (2016) 189-96. https://doi.org/10.1126/science.aad0501
[142] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P.V. Coveney, F. Mintert, F. Wilhelm, P.J. Love, The Bravyi-Kitaev transformation: Properties and applications, International Journal of Quantum Chemistry 115 (2015) 1431-1441. https://doi.org/10.1002/qua.24969
[143] N. M. Tubman, C. Mejuto-Zaera, J. M. Epstein, D. Hait, D. S. Levine, W. Huggins, Z. Jiang, J. R. Mc-Clean, R. Babbush, M. Head-Gordon, K. B. Whaley, Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices, arXiv e-prints, arXiv:1809.05523 (2018). https://doi.org/10.48550/arXiv.1809.05523
[144] L. Vinet, A. Zhedanov, Dual- 1 Hahn Polynomials and perfect state transfer, Journal of Physics 343 (2011). https://doi.org/10.48550/arXiv.1110.6477
[145] L. Vinet, A. Zhedanov, How to construct spin chain with perfect state transfer, Physical Review A 85 (2012). https://doi.org/10.48550/arXiv.1110.6474
[146] L. Vinet, A. Zhedanov, Almost perfect state transfer in quantum spin chains, Physical Review A 86 (2012). https://doi.org/10.48550/arXiv.1205.4680
[147] M. J. Vrakking, D. Villeneuve, A. Stolow, Observation of fractional revivals of a molecular wave packet, Physical Review A 54 (1996). https://doi.org/10.1103/PhysRevA.54.R37
[148] J. Wagner, M. A. Rapsomaniki, S. Chevrier, T. Anzeneder, C. Langwieder, A. Dykgers, M. Rees, A. Ramaswamy,S.Muenst, S.D.Soysal, et al., A single cell atlas of the tumor and immune ecosystem of human breast cancer. Cell, 177 (2019) 1330-1345. https://doi.org/10.1016/j.cell.2019.03.005
[149] Sh. Wang, T. Feng, perfect state transfer on bi-Cayley graphs over abelian groups, Discrete Mathematics 346 (2023). https://doi.org/10.1016/j.disc.2023.113362
[150] Sh. Wang, M. Arezoomand, T. Feng, Perfect state transfer on quasi-abelian semi-Cayley graphs, Journal of Algebraic Combinatorics 59 (2024) 179-211. https://doi.org/10.1007/s10801-023-012886
[151] J. Wang, S. Lisanza, D. Juergens, D. Tischer, J. L. Watson, K. M. Castro, R. Ragotte, A. Saragovi, L. F. Milles, M. Baek, et al., Scaffolding protein functional sites using deep learning, Science3 77 (2022) 387-394. https://doi.org/ 10.1126/science.abn2100
[152] W. Wang, X. Liu, J. Wang, Laplacian pretty good edge state transfer in path, arxiv: 2209- 04630, (2022). https://doi.org/10.48550/arXiv.2209.04630
[153] J.Watrous, Quantum simulation of classical random walks and undirected graph connectivity, Journal of Computer and System Sciences 62 (2001) 376-391. https://doi.org/10.48550/arXiv.cs/9812012
[154] B. I. M. Wicky, L. F. Milles, A. Courbet, R. J. Ragotte, J. Dauparas, E. Kinfu, S. Tipps, R.D. Kibler, M. Baek, F. DiMaio, et al., Hallucinating symmetric protein assemblies, Science 378 (2022) 56-61. https://doi.org/ 10.1126/science.add1964
[155] K. K.Yang, Z.Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering, Nature methods 16 (2019) 687-694. https://doi.org/10.1038/s41592-019-0496-6
[156] J. A.Yeazell, C.Stroud.Jr, Observation of spatially localised atomic electron wavepackets, Physical Review Letters 60 (1988). https://doi.org/10.1103/PhysRevLett.60.1494
[157] P. H. Zieschang, Cayley graphs of finite groups, Journal of Algebra and Its Applications 118 (1988) 56-61. https://doi.org/10.1016/0021-8693(88)90033-6
[158] X-Q. Zhang, S-Y. Cui, G-X. Tian, Signless Laplacian state transfer Q-graphs, Applied Mathematics and Computation 423 (2022). https://doi.org/10.1016/j.amc.2022.127070
[159] J. Zhou, C. Bu, J. Shen, Some results for the periodicity and perfect state transfer, Electron, Journal of Combinatorial Theory, Series A 18 (2011). https://doi.org/10.37236/671
[160] J. Zhou, C. By, State transfer and star complements in graphs, Discrete Applied Mathematics 175 (2014) 130-134. https://doi.org/10.1016/j.dam.2013.08.028
[161] Z. Zimboras, M. Faccin, Z. K´ad´ar, J. Whitfield, B. Lanyon, J. Biamonte, Quantum Transport Enhancement by Time-Reversal Symmetry Breaking, Scientific Reports 3 2361 (2013). https://doi.org/10.1038/srep02361
 
Volume 10, Issue 1
March 2025
Pages 87-142
  • Receive Date: 23 August 2024
  • Accept Date: 30 August 2024
  • First Publish Date: 30 August 2024
  • Publish Date: 01 March 2025