[1] S. Akbari, S. Alikhani, Y. H. Peng, Characterization of graphs using domination polynomials, Eur. J. Combin. 31 (2010) 1714–1724.
[2] S. Alikhani, The domination polynomial of a graph at −1, Graphs Combin. 29 (2013) 1175–1181.
[4] S. Alikhani, M. A. Iranmanesh, Energy of graphs, matroids and Fibonacci numbers, Iranian J. Math. Sci. Inform. 5(2) (2010) 55–60.
[5] S. Alikhani, Y. H. Peng, Chromatic zeros and the golden ratio, Appl. Anal. Discrete Math. 3 (2009) 120–122.
[6] S. Alikhani, Y. H. Peng, Chromatic roots and generalized Fibonacci numbers, Appl. Anal. Discrete Math. 3(2) (2009) 330–335.
[7] S. Alikhani, R. Hasni, Algebraic integers as chromatic and domination roots, Int. J. Combin. 2012 (2012) 8, Article ID 780765.
[8] J. Arndt, Matters Computational: Ideas, Algorithms, Springer, 2011.
[9] R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129–132.
[10] H.-J. Bandelt, M. van de Vel, Embedding topological median algebras in products of dendrons, Proc. London Math. Soc. s3-58(3) (1989) 439–453.
[11] S. Barik, S. Pati, B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21(1) (2007) 47–56.
[12] A. E. Brouwer, The number of dominating sets of a finite graph is odd, preprint.
[13] E.J. Cockayne, S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7 (1977) 247–261.
[14] M. V. Diudea, I. Gutman, L. Jantschi, Molecular Topology, Huntington, NY. 2001.
[15] F. M. Dong, K. M. Koh, K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Co. Pte. Ltd., 2005.
[16] ¨ O. Eˇ gecioˇglu, S. Klavˇ zar, M. Mollard, Fibonacci Cubes with Applications and Variations, World Scientific, 2023. [17] R. Frucht, R. Harary, On the corona of two graphs, Aequationes Mathematicae, 4 (1970) 322–325.
[18] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forshungsz. Graz 103 (1987) 1–22.
[19] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[20] D.J. Harvey, G.F. Royle, Chromatic roots at 2 and the Beraha number B10, J. Graph Theory, 95(3) (2020) 445–456.
[21] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, in: Chapman and Hall/CRC Pure and Applied Mathematics Series, Marcel Dekker, Inc. New York, 1998.
[22] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[23] H. Hosoya, Topological index, A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull.Chem.Soc.Jpn. 44(9) (1971) 2332–2339.
[24] Y. Huang, L. Shi, X. Xu, The Hosoya index and the Merrifield–Simmons index, J. Math. Chem. 56 (2018) 3136–3146. [25] W. Imrich, S. Klavˇ zar, H.M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12(1) (1999) 111–118.
[26] B. Jackson, A zero free interval for chromatic polynomials of graphs, Combin. Probab. Comput. 2 (1993) 325–336.
[27] D.J. Kleitman, B. Golden, Counting trees in a certain class of graphs, Amer. Math. Montly (1975) 40–44.
[28] F. Knox, F. Mohar, D.R. Wood, A golden ratio inequality for vertex degrees of graphs, Amer. Math. Monthly 126(8) (2019) 742–747.
[29] T. Koshy, Fibonacci and Lucas numbers with applications, A Willey-Interscience Publication, 2001.
[30] S. Pirzada, I. Gutman, Energy of graph is never the square root of an odd integer, Appl. Anal. Discr. Math. 2 (2008) 118–121.
[31] W.T. Tutte, On chromatic polynomials and the golden ratio, J. Combin. Theory, Ser B 9 (1970) 289296.
[32] D. West, Introduction to Graph Theory, Prentice Hall, 2 edition, 2010.
[33] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
[34] B. Zelinka, Domination in the generalized Petersen graphs, Czechoslov. Math. J. 52(127) (2002) 11–16.
[35] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147. [36] B. Zelinka, On domatic numbers of graphs, Math. Slovaca 31 (1981) 91–95.