Orbit entropy versus the symmetry index

Document Type : Full Length Article

Authors

1 College of Artificial Intelligence, Nankai University, Tianjin 300350, China

2 Department of Biomedical Computer Science and Mechatronics, UMIT, Hall in Tyrol, Austria

3 Department of Computer Science, Swiss Distance University of Applied Sciences, Brig, Switzerland

4 Akad University, School of Engineering & Technology, Heilbronner Strasse 86,70191 Stuttgart, Germany

5 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, I. R. Iran

Abstract

The aim of this paper is to compute the novel counting polynomial, orbit polynomial, the symmetry index and the orbit-entropy of several classes of network.

Graphical Abstract

Orbit entropy versus the symmetry index

Keywords

Main Subjects


[1] K. Balasubramanian, Computer perception of NMR symmetrys, J. Magnet. Reson. 112 (1995) 182–
190.
[2] K. Balasubramanian, Generators of the character tables of generalized wreath product groups,
Theor. Chim. Acta. 78 (1990) 31–43.
[3] K. Balasubramanian, Symmetry operators of generalized wreath products and their applications
to chemical physics, Int. J. Quantum Chem. 22 (1982) 1013–1031.
[4] K. Balasubramanian, The symmetry groups of nonrigid molecules as generalized wreath products
and their representations, J. Chem. Phys. 72 (1980) 665–677.
[5] A. Barrat, M. Weigt, On the properties of small-world graphs, Eur. Phys. J. B. 13 (2000) 547–560.
[6] M. Dehmer, Z. Chen, F. Emmert-Streib, A. Mowshowitz, Y. Shi, Sh. Tripathi, Y. Zhang, Towards
detecting structural branching and cyclicity in graphs: A polynomial-based approach, Inf. Sci. 471
( 2019) 19–28.
[7] M. Dehmer, F. Emmert-Streib, Y. Shi, Interrelations of graph distance measures based on topological indices, PLoS One 9 (2014) e94985.
[8] M. Dehmer, A. Mehler, A new method of measuring similarity for a special class of directed
graphs, Tatra Mt. Math. Publ. 36 (2007) 39–59.
[9] M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inf. Sci. 181 (2011) 57–78.
[10] M. Dehmer, A. Mowshowitz, Generalized graph entropies, Complexity, 17 (2011) 45–50.
[11] M. Dehmer, A. Mowshowitz, F. Emmert-Streib, Connections between classical and parametric
graph entropies, PLoS One. 6 (2011) e15733.
[12] M. Dehmer, Y. Shi, F. Emmert-Streib, Graph distance measures based on topological indices revisited, Appl. Math. Comput. 266 (2015) 623–633.
[13] M. Dehmer, Y. Shi, F. Emmert-Streib, Interrelations of graph distance measures based on topological indices, PLoS One. 9 (2014) e94985.
[14] M. Dehmer, Y. Shi, F. Emmert-Streib, Structural differentiation of graphs using Hosoya-based indices, PLoS One. 9 (2014) e102459.
[15] M. Dehmer, L. Sivakumar, K. Varmuza, Uniquely discriminating molecular structures using novel
eigenvalue-based descriptors, MATCH Commun. Math. Comput. Chem. 67 (2012) 147–172.
[16] M. Dehmer, K. Varmuza, S. Borgert, F. Emmert-Streib, On entropy based molecular descriptors:
Statistical analysis of real and synthetic chemical structures, J. Chem. Inf. Model. 49 (2009) 1655–
1663.
[17] J. D. Dixon, B. Mortimer, Permutation Groups. New York, NY, USA, Springer-Verlag, 1996.
[18] T. Dosli ˇ c, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y. ´
48 (2005) 47–55.
[19] P. Erdos and v. R ¨ enyi, On Random Graphs. I, Publicationes Mathematicae, vol. 6, pp. 290–297, ´
1959.
[20] M. Ghorbani, M. Dehmer, S. Zangi, Graph operations based on using distance-based graph entropies, Appl. Math. Comput. 333 (2018) 547–555.
[21] M. Ghorbani, M. Dehmer, F. Emmert-Streib, On the degeneracy of the orbit polynomial and related
graph polynomials, Symmetry 12 (2020) 1643. https://doi.org/10.3390/sym12101643.
[22] M. Ghorbani, M. Jalali-Rad, M. Dehmer, Orbit polynomial of graphs versus polynomial with integer coefficients, Symmetry 13 (2021) 710.
[23] M. Girvan, M. Newman, Community structure in social and biological networks, Proc. Natl. Acad.
Sci. USA. 99 (2002) 7821–7826.
[24] R. Guimera, S. Mossa, A. Turtschi, L. A. N. Amaral, The worldwide air transportation network:
Anomalous centrality, community structure, and cities global roles, Proceedings of the National
Academy of Sciences of the United States of America 102 (2005) 7794–7799.
[25] F. Harary, Graph Theory, Boston, MA, USA, Addison-Wesley Publishing Company, 1969.
[26] M. D. Humphries, K. Gurney, Graph small-world-ness: A quantitative method for determining
canonical graph equivalence, PLoS One. 3 (2008) e0002051.
[27] A. Kirman, The economy as an evolving network, Journal of Evolutionary Economics 7 (1997)
339–353.
[28] B. D. MacArthur, R. J. Sanches-Garcia, J. W. Anderson, Symmetry in complex graphs, Discret.
Appl. Math. 156 (2008) 3525–3531.
[29] J. M. Montoya and R. V. Sole, Small world patterns in food webs, Journal of Theor. Biol. 214 (2002) ´
405–412.
[30] A. Mowshowitz, M. Dehmer, A symmetry index for graphs, Symmetry Cult. Sci. 21 (2010) 321–327.
[31] A. Mowshowitz, Entropy and the complexity of the graphs: I. An index of the relative complexity
of a graph, Bull. Math. Biophys. 30 (1968) 175–204.
[32] A. Mowshowitz, Entropy and the complexity of graphs II: The information content of digraphs
and infinite graphs, Bull. Math. Biophys. 30 (1968) 225–240.
[33] A. Mowshowitz, Entropy and the complexity of graphs III: Graphs with prescribed information
content, Bull. Math. Biophys. 30 (1968) 387–414.
[34] A. Mowshowitz, Entropy and the complexity of graphs IV: Entropy measures and graphical structure, Bull. Math. Biophys. 30 (1968) 533–546.
[35] M. E. Newman, S. H. Strogatz, D. J. Watts, Random graphs with arbitrary degree distributions and
their applications, Phys. Rev. E. 64 (2001) 026118.
[36] M. E. Newman, C. Moore, D. J. Watts, Mean-field solution of the small-world graph model, Phys.
Rev. Lett. 84 (2000) 3201–3204.
[37] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scalefree networks, Phys. Rev. Lett. 86
(2001) 3200–3203.
[38] R Core Team, Vienna, Austria. 2013.R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. [Online]. Available: http://www.R-project.org
[39] N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys. 17 (1955) 229–235.
[40] C. Rozenblat, G. Melancon, P.-Y. Koenig, Continental integration in multilevel approach of world
air transportation (2000-2004). Networks and Spatial Economics, 2008.
[41] J. P. Scott, Social Network Analysis: A Handbook, SAGE Publications, 2000.
[42] H. Tan, M. Z. Liao, K. Balasubramanian, A flexible correlation group table (CGT) method for the
relativistic configuration wave functions, J. Math. Chem. 28 (2000) 213–239.
[43] E. Trucco, A note on the information content of graphs, Bull. Math. Biophys. 18 (1956) 129–135.
[44] D. J. Watts, S. H. Strogatz, Dynamics of small-world graphs, Nature 39 (1998) 440–442.
[45] S. Wasserman, K. Faust. Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994. 
Volume 9, Issue 2
June 2024
Pages 123-131
  • Receive Date: 01 April 2024
  • Revise Date: 15 April 2024
  • Accept Date: 17 May 2024
  • First Publish Date: 01 June 2024
  • Publish Date: 01 June 2024