Orbit entropy versus the symmetry index

Document Type : Full Length Article

Authors

1 Swiss Distance University of Applied Sciences, UMIT, Hall, Tyrol, Austria, Nankai University

2 Department of pure math, University of Kashan

Abstract

The aim of this paper is to compute the novel counting polynomial, orbit polynomial,
the symmetry index and the orbit-entropy of several classes of networkThe aim of this paper is to compute the novel counting polynomial, orbit polynomial,
the symmetry index and the orbit-entropy of several classes of network

Graphical Abstract

Orbit entropy versus the symmetry index

Keywords

Main Subjects


[1] K. Balasubramanian, Computer perception of NMR symmetrys, J. Magnet. Reson. 112 (1995) 182–
190.
[2] K. Balasubramanian, Generators of the character tables of generalized wreath product groups,
Theor. Chim. Acta. 78 (1990) 31–43.
[3] K. Balasubramanian, Symmetry operators of generalized wreath products and their applications
to chemical physics, Int. J. Quantum Chem. 22 (1982) 1013–1031.
[4] K. Balasubramanian, The symmetry groups of nonrigid molecules as generalized wreath products
and their representations, J. Chem. Phys. 72 (1980) 665–677.
[5] A. Barrat, M. Weigt, On the properties of small-world graphs, Eur. Phys. J. B. 13 (2000) 547–560.
[6] M. Dehmer, Z. Chen, F. Emmert-Streib, A. Mowshowitz, Y. Shi, Sh. Tripathi, Y. Zhang, Towards
detecting structural branching and cyclicity in graphs: A polynomial-based approach, Inf. Sci. 471
( 2019) 19–28.
[7] M. Dehmer, F. Emmert-Streib, Y. Shi, Interrelations of graph distance measures based on topological indices, PLoS One 9 (2014) e94985.
[8] M. Dehmer, A. Mehler, A new method of measuring similarity for a special class of directed
graphs, Tatra Mt. Math. Publ. 36 (2007) 39–59.
[9] M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inf. Sci. 181 (2011) 57–78.
[10] M. Dehmer, A. Mowshowitz, Generalized graph entropies, Complexity, 17 (2011) 45–50.
[11] M. Dehmer, A. Mowshowitz, F. Emmert-Streib, Connections between classical and parametric
graph entropies, PLoS One. 6 (2011) e15733.
[12] M. Dehmer, Y. Shi, F. Emmert-Streib, Graph distance measures based on topological indices revisited, Appl. Math. Comput. 266 (2015) 623–633.
[13] M. Dehmer, Y. Shi, F. Emmert-Streib, Interrelations of graph distance measures based on topological indices, PLoS One. 9 (2014) e94985.
[14] M. Dehmer, Y. Shi, F. Emmert-Streib, Structural differentiation of graphs using Hosoya-based indices, PLoS One. 9 (2014) e102459.
[15] M. Dehmer, L. Sivakumar, K. Varmuza, Uniquely discriminating molecular structures using novel
eigenvalue-based descriptors, MATCH Commun. Math. Comput. Chem. 67 (2012) 147–172.
[16] M. Dehmer, K. Varmuza, S. Borgert, F. Emmert-Streib, On entropy based molecular descriptors:
Statistical analysis of real and synthetic chemical structures, J. Chem. Inf. Model. 49 (2009) 1655–
1663.
[17] J. D. Dixon, B. Mortimer, Permutation Groups. New York, NY, USA, Springer-Verlag, 1996.
[18] T. Dosli ˇ c, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y. ´
48 (2005) 47–55.
[19] P. Erdos and v. R ¨ enyi, On Random Graphs. I, Publicationes Mathematicae, vol. 6, pp. 290–297, ´
1959.
[20] M. Ghorbani, M. Dehmer, S. Zangi, Graph operations based on using distance-based graph entropies, Appl. Math. Comput. 333 (2018) 547–555.
[21] M. Ghorbani, M. Dehmer, F. Emmert-Streib, On the degeneracy of the orbit polynomial and related
graph polynomials, Symmetry 12 (2020) 1643. https://doi.org/10.3390/sym12101643.
[22] M. Ghorbani, M. Jalali-Rad, M. Dehmer, Orbit polynomial of graphs versus polynomial with integer coefficients, Symmetry 13 (2021) 710.
[23] M. Girvan, M. Newman, Community structure in social and biological networks, Proc. Natl. Acad.
Sci. USA. 99 (2002) 7821–7826.
[24] R. Guimera, S. Mossa, A. Turtschi, L. A. N. Amaral, The worldwide air transportation network:
Anomalous centrality, community structure, and cities global roles, Proceedings of the National
Academy of Sciences of the United States of America 102 (2005) 7794–7799.
[25] F. Harary, Graph Theory, Boston, MA, USA, Addison-Wesley Publishing Company, 1969.
[26] M. D. Humphries, K. Gurney, Graph small-world-ness: A quantitative method for determining
canonical graph equivalence, PLoS One. 3 (2008) e0002051.
[27] A. Kirman, The economy as an evolving network, Journal of Evolutionary Economics 7 (1997)
339–353.
[28] B. D. MacArthur, R. J. Sanches-Garcia, J. W. Anderson, Symmetry in complex graphs, Discret.
Appl. Math. 156 (2008) 3525–3531.
[29] J. M. Montoya and R. V. Sole, Small world patterns in food webs, Journal of Theor. Biol. 214 (2002) ´
405–412.
[30] A. Mowshowitz, M. Dehmer, A symmetry index for graphs, Symmetry Cult. Sci. 21 (2010) 321–327.
[31] A. Mowshowitz, Entropy and the complexity of the graphs: I. An index of the relative complexity
of a graph, Bull. Math. Biophys. 30 (1968) 175–204.
[32] A. Mowshowitz, Entropy and the complexity of graphs II: The information content of digraphs
and infinite graphs, Bull. Math. Biophys. 30 (1968) 225–240.
[33] A. Mowshowitz, Entropy and the complexity of graphs III: Graphs with prescribed information
content, Bull. Math. Biophys. 30 (1968) 387–414.
[34] A. Mowshowitz, Entropy and the complexity of graphs IV: Entropy measures and graphical structure, Bull. Math. Biophys. 30 (1968) 533–546.
[35] M. E. Newman, S. H. Strogatz, D. J. Watts, Random graphs with arbitrary degree distributions and
their applications, Phys. Rev. E. 64 (2001) 026118.
[36] M. E. Newman, C. Moore, D. J. Watts, Mean-field solution of the small-world graph model, Phys.
Rev. Lett. 84 (2000) 3201–3204.
[37] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scalefree networks, Phys. Rev. Lett. 86
(2001) 3200–3203.
[38] R Core Team, Vienna, Austria. 2013.R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. [Online]. Available: http://www.R-project.org
[39] N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys. 17 (1955) 229–235.
[40] C. Rozenblat, G. Melancon, P.-Y. Koenig, Continental integration in multilevel approach of world
air transportation (2000-2004). Networks and Spatial Economics, 2008.
[41] J. P. Scott, Social Network Analysis: A Handbook, SAGE Publications, 2000.
[42] H. Tan, M. Z. Liao, K. Balasubramanian, A flexible correlation group table (CGT) method for the
relativistic configuration wave functions, J. Math. Chem. 28 (2000) 213–239.
[43] E. Trucco, A note on the information content of graphs, Bull. Math. Biophys. 18 (1956) 129–135.
[44] D. J. Watts, S. H. Strogatz, Dynamics of small-world graphs, Nature 39 (1998) 440–442.
[45] S. Wasserman, K. Faust. Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994. 
Volume 9, Issue 2
June 2024
Pages 123-131
  • Receive Date: 01 April 2024
  • Revise Date: 15 April 2024
  • Accept Date: 17 May 2024
  • Publish Date: 01 June 2024