Let $\Gamma$ be a $k-$regular graph with the second maximum eigenvalue $\lambda$. Then $\Gamma$ is said o be Ramanujan graph if $\lambda\leq 2\sqrt{k-1}.$ Let $G$ be a finite group and $\Gamma=Cay(G,S)$ be a Cayley graph related to $G$. The aim of this paper is to investigate the Ramanujan Cayley graphs of sporadic groups.
Mehry, S. (2023). Ramanujan Cayley graphs on sporadic groups. Journal of Discrete Mathematics and Its Applications, 8(4), 223-237. doi: 10.22061/jdma.2023.10294.1062
MLA
Mehry, S. . "Ramanujan Cayley graphs on sporadic groups", Journal of Discrete Mathematics and Its Applications, 8, 4, 2023, 223-237. doi: 10.22061/jdma.2023.10294.1062
HARVARD
Mehry, S. (2023). 'Ramanujan Cayley graphs on sporadic groups', Journal of Discrete Mathematics and Its Applications, 8(4), pp. 223-237. doi: 10.22061/jdma.2023.10294.1062
CHICAGO
S. Mehry, "Ramanujan Cayley graphs on sporadic groups," Journal of Discrete Mathematics and Its Applications, 8 4 (2023): 223-237, doi: 10.22061/jdma.2023.10294.1062
VANCOUVER
Mehry, S. Ramanujan Cayley graphs on sporadic groups. Journal of Discrete Mathematics and Its Applications, 2023; 8(4): 223-237. doi: 10.22061/jdma.2023.10294.1062