A survey on symmetric division degree index

Document Type : Review Article

Author

Ministry of Education, Organization for Education and Training, Tehran, I. R. Iran

Abstract

The symmetric division degree (SDD) index is one the 148 discrete Adriatic indices,
introduced by Vukicevi´c et al. as a remarkable predictor of total surface area of polychlorobiphenyls.
The SDD index has already been proved a valuable index in the QSPR/QSAR studies. This paper is
essentially a survey of known results about bounds for SDD index of graphs.

Graphical Abstract

A survey on symmetric division degree index

Keywords

Main Subjects


[1] H. Abdo, D. Dimitrov, The total irregularity of graphs under graph operations, Miskolc Math.
Notes 15 (2014) 3–17.
[2] A. M. Albalahi, A. Ali, On the Maximum Symmetric Division Deg Index of k-Cyclic Graphs, J.
Math. 2022 (2022).
[3] A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs,
MATCH Commun. Math. Comput. Chem. 83 (2020) 205–220.
[4] K. C. Das, M. Matej´c, E. Milovanovi´c, I. Milovanovi´c, Bounds for symmetric division deg index of graphs, Filomat 33(3) (2019) 683–698.
[5] J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR,
Gordon and Breach, Amsterdam, 1999.
[6] J. Du, X. Sun, On symmetric division deg index of trees with given parameters, AIMS Math. 6(6)
(2021) 6528–6541.
 [7] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68(1) (2012) 217–230.
[8] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422–425.
[9] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modelling the
enthalpy of formation of alkanes, Indian J. Chem. 37 A (1998) 849–855.
[10] S. Fajtlowicz, On conjectures of graffiti II, Congr. Numer. 60 (1987) 189–197.
[11] B. Furtula, K. Das, I. Gutman, Comparative analysis of symmetric division deg index as potentially useful molecular descriptor, Int. J. Quantum Chem. 118 (2018) 25659.
[12] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190.
[13] Y. J. Ge, J. B. Liu, M. Younas, M. Yousaf, W. Nazeer, Analysis of SC5C7[p, q] and NPHX[p, q] nanotubes via topological indices, J. Nanomater. 2019 (2019) 1–10.
[14] M. Ghorbani, S. Zangi, N. Amraei, New results on symmetric division deg index, J. Appl. Math.
Comput. 65 (2021) 161–176.
[15] C. K. Gupta, V. Lokesha, S. B. Shwetha, On the symmetric division deg index of graph, Southeast Asian Bull. Math. 40 (2016) 59–80.
[16] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 13–19.
[17] I. Gutman, B. Ruˇsˇci´c, N. Trinajsti´c, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
[18] I. Gutman, M. Togan, A. Yurttas, A. S. CEVIK, I. N. CANGUL, Inverse Problem for Sigma Index,
MATCH Commun. Math. Comput. Chem. 79(2) (2018) 491–508.
[19] I. Gutman, N. Trinajsti´c, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[20] G. O. Kizilirmak, E. Sevgi, S. Buyukkose, I. N. Cangul, Lower and Upper Bounds for Some Degree-Based Indices of Graphs, Preprints 2022, 2022110152 (doi: 10.20944/preprints202211.0152.v1).
[21] D. J. Klein, M. Randi´c, Resistance distance, J. Math. Chem. 12 (1993) 81–95.
[22] H. Liu, Y. Huang, Sharp bounds on the symmetric division deg index of graphs and line graphs, Comp. Appl. Math. 42(6) (2023) 285.
[23] C. Liu, Y. Pan, J. Li, tricyclic graphs with the minimum symmetric division deg index, Discrete
Math. Lett. 3 (2020) 14–18.
[24] V. Lokesha, T. Deepika, Symmetric division deg index of tricyclic and tetracyclic graphs, Int. J. Sci. Eng. Res. 7(5) (2016) 53–55.
[25] V. Lokesha, T. Deepika, I. N. Cangul, Symmetric division deg and inverse sum indeg indices of
polycyclic aromatic hydrocarbons (PAHs) and poly-hex nanotubes, Southeast Asian Bull. Math.
41 (2017) 707–715.
[26] I. Zˇ . Milovanovic´, E. I. Milovanovic´, I. Gutman, B. Furtula, Some inequalities for the forgotten
topological index, Int. J. Appl. Graph Theory 1(1) (2017) 1–15
[27] G. Mohanappriya, D. Vijayalakshmi, Symmetric division degree index and inverse sum index of
transformation graph, J. Phys.: Conf. Ser. 1139 (2018) 012048.
[28] M. Munir,W. Nazeer, A. R. Nizami, S. Rafique, S. M. Kang, M-polynomials and topological indices of titania nanotubes, Symmetry 8(11) (2016) 1–9.
[29] J. L. Palacios, New upper bounds for the symmetric division deg index of graphs, Discrete Math. Lett. 2 (2019) 52–56.
[30] Y. Pan, J. Li, Graphs that minimizing symmetric division deg index, MATCH Commun. Math.
Comput. Chem. 82 (2019) 43–55.
[31] A. Rajpoot, L. Selvaganesh, Bounds of the Symmetric Division Deg Index for Trees and Unicyclic Graphs with A Perfect Matching, Iranian J. Math. Chem. 11(3) (2020) 141–159
[32] A. Rajpoot, L. Selvaganesh, Study of Bounds and Extremal Graphs of Symmetric Division Degree Index for Bicyclic Graphs with Perfect Matching, Iranian J. Math. Chem. 13(2) (2022) 145–165
[33] M. Randi´c, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
[34] Y. Rao, A. Kanwal, R. Abbas, S. Noureen, A. Fahad, M. Qureshi, Some degree-based topological indices of caboxy-terminated dendritic macromolecule, Main Group Met. Chem. 44(1) (2021) 165-172.
[35] G.H. Shirdel, H. Rezapour, A.M. Sayadi, The Hyper-Zagreb index of graph operations, Iran. J.
Math. Chem. 4(2) (2013) 213–220.
 [36] X. Sun, Y. Gao, J. Du, On symmetric division deg index of unicyclic graphs and bicyclic graphs
with given matching number, AIMS Math. 6(8) (2021) 9020–9035.
[37] A. Vasilyev, Upper and lower bounds of symmetric division deg index, Iran. J. Math. Chem. 2
(2014) 91–98.
[38] D. Vukiˇcevi´c, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261–273.
[39] D. Vukiˇcevi´c, M. Gaˇsperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83
(2010) 243–260.
[40] B. Yang, V. V. Manjalapur, S. P. Sajjan, M. M. Matthai, J. B. Liu, On extended adjacency index with respect to acyclic, unicyclic and bicyclic graphs, Mathematics 7(7) (2019) 652.
 
Volume 7, Issue 4
December 2022
Pages 237-251
  • Receive Date: 25 May 2023
  • Revise Date: 04 June 2023
  • Accept Date: 10 June 2023
  • Publish Date: 01 December 2022