[1] H.Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[2] S. Fajtlowicz, On conjectures of graffiti II, Congr. Numer. 60 (1987) 189-197.
[3] Y. Alizadeh, M. Azari, T. Doˇsli´c, Computing the eccentricity-related invariants of single-defect
carbon nanocones, J. Comput. Theor. Nanosci. 10(6) (2013) 1297-1300.
[4] H. Dureja, S. Gupta, A.K. Madan, Predicting anti-HIV-1 activity of 6-arylbenzonitriles: computational approach using super augmented eccentric connectivity topochemical indices, J. Mol.
Graph. Model 26 (2008) 1020-1029.
[5] M. Alaeiyan, R. Mojarad, J. Asadpour, A new method for computing eccentric connectivity polynomial of an infinite family of linear Polycene parallelogram benzenod, Optoelectron. Adv. Mat. 5(7) (2011) 761-763.
[6] S. Sardana, A. K. Madan, Application of graph theory: relationship of molecular connectivity
index, Wiener’s index and eccentric connectivity index with diuretic activity, MATCH Commun.
Math. Comput. Chem. 43 (2001) 85-98.
[7] S. Sardana, A. K. Madan, Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor, J. Mol. Model. 8 (2002) 258-265.
[8] A. Ilic, I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem. 65(3) (2011) 731-744.
[9] M. A. Malik, Two degree-distance based topological descriptors of some product graphs, Discrete Appl. Math. 236 (2018) 315-328.