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1 Introduction

Carbon atoms can bond into very large molecules. Named fullerenes, after U.S. engineer
Buckminster Fuller (1895-1983), these carbon molecules have the same symmetry as a soccer
ball, as shown in Figure 1. They are popularly called buckyballs. The most important mem-
ber of fullerene graphs is Cgp fullerene with exactly 60 carbon atoms. In general, a fullerene
is a cubic planar graph having all faces 5- or 6-cycles, see Figure 2. Examples include the
20-vertex dodecahedral graph, 24-vertex generalized Petersen graph GP(12,2) and graph on
26 vertices truncated icosahedral graph.

A classical fullerene or briefly a fullerene is a cubic three connected graph whose faces
entirely composed of pentagons and hexagones and we denote it by a PH-fullerene, see [18,
19]. The non-classical fullerenes are composed of triangles and hexagones or quadrangles
and hexagones and we denote them by TH-fullerene or SH-fullerene, respectively. For see
some problems concerning with fullerene graphs and many properties of them are derived,
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Figure 1. Fullerene Cgp.

we refer the readers to [1,2,4,7-9] as well as [11,13,16,17,20]. Fullerenes are special cases of
a larger class of graphs, namely polyhedral graphs. A polyhedral graph is a three connected
simple planar graph and in this paper, we consider only the cubic polyhedral graphs whose
faces are a combination of triangles, quadrangles, pentagons and hexagones, see [4, 6].

An automorphism of graph X = (V, E) is a bijection f on V which preserves the edge set E.
In other words, e = uv is an edge of E if and only if ef = ufvf is an edge of E. Here, the image
of vertex u is denoted by uf. The set of all automorphisms of graph X with the operation of
composition is a group on V(X) denoted by Aut(X). Frucht [12] was the first who dealt with
graph automorphism. Also quantitative measures based on graph automorphism have been
developed, see [3].

Cubic polyhedral graph with ¢ triangular, s quadrilateral, p pentagonal and & hexagonal
faces and no other faces is denoted by a (t,s, p,h)—polyhedral or briefly a (t,s, p)-polyhedral
graph. By these notations, a SPH-polyhedral graph is a planar graph whose faces are quad-
rangles, pentagons and hexagons. Let m be the number of edges in a given SPH-polyhedral
graph F. In [11] Fowler and his co-authors showed that fullerenes are realizable within 28
point groups. In [21] Kutnar et al. proved that for any PH-fullerene graph F, |Aut(F)| di-
vides 120. The present authors in [14] proved that for given TH-fullerene F, | Aut(F)| divides
24 and in [15] they proved that for given SH-polyhedral graph F, | Aut(F)| divides 48. These
results are given in the following theorem.

Theorem 1.1. We have
* the size of automorphism group of classical fullerenes divides 120 [21].
* the size of automorphism group of TSH-fullerenes divides 24, [15].
* the size of automorphism group of SPH-fullerenes divides 48, [21].

A TPH-polyhedral graph F is one whose faces are triangles, pentagons and hexagons. In
this paper, we prove the following theorem.
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Figure 2. Planar graphs of Fullerenes Cy, Co4 and Cog.

Theorem A. Let F be a TPH-polyhedral graph. Then the automorphism group of F is a subgroup
of a {2,3,5}-group. Moreover, the order of Aut(F) divides 2% x 3.

2 Definitions and preliminaries

Let G be a group and () a non-empty set. An action of G on Q) denoted by (G|Q)) induces
a group homomorphism ¢ from G into the symmetric group S on ), where ¢(g)* = g*
(x € Q). The orbit of an element a € () is denoted by «® and it is defined as the set of all a8
where ¢ € G. Size of () is called the degree of this action. The kernel of this action is denoted
by Kerg. An action is faithful if Kergp = {1}. The stabilizer of element a € Q) is defined as
Gy ={g € Glag8 =a}. Let H= G, then for a,f € Q (a # B), Hg is denoted by G, g. The orbit-
stabilizer theorem implies that |aC|.|G,| = |G|. For every g € G, let fix(g) = {a € X, a8 = a},
then we have:
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Lemma 2.1. (Cauchy-Frobenius Lemma) Let G acts on set (), then the number of orbits of G is

1

G| Z | fix(g)l-

gcG

Example 2.2. Consider the fullerene graph Fos depicted in Figure 3. If « denotes the rotation
of Fos through an angle of 60° around an axis through the midpoints of the front and back
faces, then the corresponding permutationis « = (1,2,3,4,5,6)(7,10,14,17,20,24)(8,11,15,18,
21,25) (9,12,16,1923,26) (13,50,58,74,66,42) (22,71,47,39,55,63) (27,28,29,30,31,32) (33,48,
56,72,64,40) (34,49,57,73,65,41)(35,51,59,75,67,43) (36,52,60,76,68,44)(37,53,61,77,69,45)
(38,54,62,78,70,46) (79,80,81,82,83,84)(85,86,87,88,89,90) (91,96,95,94,93,92). Thus, one
of orbits of subgroup () containing the vertex 1 is 1{0) = {1,2,3,4,5,6}. Now, consider the
axis symmetry element which fixes vertices {1,4,8,18,43,44,59,60, 85,88, 92,95}, the corre-
sponding permutationis B = (2,6) (3,5) (7,9) (10,26) (11,25)(12,24)(13,71) (14,23) (15,21)
(16,20) (17,19)(22,50)(27,28)(29,32)(30,31) (33,70) (34,69) (35,67) (36,68) (37,65) (38 ,64)
(39,66) (40,46) (41,45) (42,47) (48,78)(49,77)(51,75) (52,76) (53,73) (54,72) (55,74)(56,62)
(57,61)(58,63)(79,80)(81,84)(82,83)(86,90)(87,89)(91,93)(94,96).

Let G = Aut(Fys), clearly G > (a, ) and the orbit-stabilizer property implies that |G| =
|1¢| x |G1|. Any symmetry of the polyhedral graph Fos which fixes vertex 1 must also fixes
the opposite vertex 4. By applying orbit-stabilizer property, we found that |G| = [4¢1]| x
|G14|. It is easy to prove that |G; 4| = 2 and hence |G| = 12. On the other hand, |(«,8)| = 12,
where a* = > =1, 'ap = a~!. This leads us to conclude that G = (&, 8) = D,.

Example 2.3. Here, we compute the order of automorphism group of polyhedral graph Fyg
depicted in Figure 4. Similar to the last example, if @ denotes the rotation of Fsg through an
angle of 90° around an axis through the midpoints of the front and back faces, then the corre-
sponding permutationis & = (1,3,5,7) (2,4,6,8)(9,15,26,21) (10,16,27,32) (11,17,28,22)(12,
29,23)(13,19,30,24)(14,20,31,25)(33,45,41,37) (34,46 ,42,38)(35,47,43,39) (36,48,44,40). Thus
1 = {1,3,5,7} and consider the axis symmetry element which fixes no vertices:
B=(1,2)(3,8)(4,7)(5,6)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(21,31)(22,29) (23,28) (24,
27)(25,26)(30,32)(33,40)(34,39)(35,38)(36,37)(41,48)(42,47)(43,46) (44,45).

If G = Aut(Fyg), then |G| = |2¢]| x |G,| while no element fixes 2. This means that |G,| = 1
and so |G| = |2C|. Tt is clear that 2¢#) = {1,2,3,4,5,6,7,8} and thus [2{F)| = 8. Similar to the
last example, we can see that | («, 8)| = 8, where a* = B2 =1and B~ 'af=a "', hence Aut(Fyg)
is isomorphic with dihedral group Ds.

3 Main results

Lemma 3.1. Let F be a TPH-polyhedral graph, with automorphism group Aut(F). Then the stabilizer
Aut(F) (0,0 of 2-arc (u,v,w) is trivial.
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Figure 3. Labeling of fullerene Fog.

Proof. 1t is similar to the proof of [21, Lemma 2]. O

Proposition 3.2. Let F be a TPH-polyhedral graph with automorphism group Aut(F) and u € V(F).
Then the stabilizer Aut(F), of u is trivial or it is isomorphic to one of three groups: the cyclic group
Z,, the cyclic group Z3 and the symmetric group S3.

Proof. 1t is similar to the proof of [21, Lemma 2]. O

Proof of Theorem A. Let F be a TPH-polyhedral graph with a non-trivial automorphism
group, 7 (F) be the set of triangles of F and P (F) be the set of pentagons of F. Let A = Aut(F)
and ¢, p be the number of triangles and pentagons, respectively. We can see that

|G| = [Ko| x [(G/Ko)r| x |O] =2%3F.|0],

and so
|G| =2%.3F57.|0).

We distinguish the following cases:

Case 1. t =1and p = 9. We claim that | Aut(F)| divides 3 x 2. Suppose 22 divides |A| and
Syly(A) is of order 22. The order of orbits of 7 (F) is 1. By orbit- stabilizer theorem,
we have |K7| = 22, a contradiction. Let |Syl5(A)| = 5, then |K7| = 5, a contradiction. If
|Syl3(A)| = 3%, then we have |K7| = 32, a contradiction.
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Figure 4. Labeling of fullerene Fyg.

Case 2. t =2 and p = 6, we show that |Aut(F)| divides 3 x 22. Suppose 23 divides |A|
and Syl,(A) is of order 23. Let Syl,(A) acts on triangles, then for an orbit O of this
action, we have |O| = 1 or 2. By orbit-stabilizer theorem, if |O| = 1, then |K7| =23, a
contradiction and if |O] = 2, then |Kt| = 22, a contradiction. Let |Syl5(A)| = 5, then
|K7| = 5, a contradiction. If |Syl3(A)| = 32, then we have |O| =1 and so |K7| =32, a
contradiction.

Case 3.t=23and p =3, we prove that |Aut(F)| divides 3 x 22. Let 2 divides | A| and Syl»(A)
be of order 2° acting on the set of triangles 7. Hence, |O| = 1 or 2, similar to the last
discussion, both of them are contradictions. Also, |Syl5(A)| =5 is a contradiction. If
|Syl3(A)| = 32, then the orbits of the action Syl3(A) on P(F) are of order 3 and so
|Kp| = 3, a contradiction.

It should be noted that in a given polyhedral F, no two triangles are adjacent, since F is
three connected.

Theorem 3.3. Let F be a TSH-polyhedral graph. Then Aut(F) is a subgroup of a {2,3}-group.
Moreover, the order of Aut(F) divides 24.

Proof. By using Euler’s theorem, if s = 0, then t = 4 and then F be T H- fullerene. On the other
hand, if s = 6, then t = 0 and F is a SH-fullerene. Let F is a TSH-polyhedral graph with at
least one triangle and one square. We show that |Aut(F)| divides 24. First, we prove that
the Syl (F) is of order 8. Suppose on the contrary that 2* divides |A| and Syl,(A) is of order
24, Let Sylo(A) acts on the set of triangles, clearly the order of an orbit of an this action is
1 or 2. By orbit-stabilizer theorem, if |O| = 1, then |K7| = 23, a contradiction and if |O| = 2,
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then |Kr| = 22, a contradiction. Also |Syl5(A)| =5 yields a contradiction. If |Syl3(A)| = 32,
|K;| = 32 or |K,| = 3, then we have a contradiction. This completes the proof. O

In [6] the authors derived the list of allowed symmetry groups for each class they con-
structed the smallest polyhedron for each allowed symmetry. In other words, we have two
following theorems, see [5,10,11].

Theorem 3.4. For the bifaced cubic polyhedra described by the triple (t,s, p), the possible point groups
and vertex counts of minimal examples are

i. (t,5,p)=1(4,0,0):
Zz X ZZ,ZZ X Zz X ZZ,DS,A4,S4.

ii. (t,s,p)=1(0,6,0):
C1,29,75 X Z3,53,D8, 7y X Zy X 73,
Zy X 53,D12,D¢,Zo X D13,Zy X D¢, Zp X Zy X De.

iii. (t,s,p)=(0,0,12):
C1,29,A3,,2Z4,Zy X Z3,53,56,53, 22 X 73,29 X Zy X Z3,Dg,Z> X Z5,D12,Z5 X S3,
A4, Do, Zo X D13,D04,54,As X Zp, A5, 75 X As.

Theorem 3.5. For cubic polyhedra with at least two face sizes chosen from {3,4,5} and no face of size
greater than 6 described by the triple (t,s,p), the possible point groups and vertex counts of minimal
examples are

i. (t,s,p)=(3,1,1):
C1,2,;.

ii. (t,s,p)=1(3,03):
Cl/ZZI A3/ SSIZZ X Z3'

iii. (t,s,p)=1(2,3,0):
C1,29,7Z5 X Z3,53,D13.

. (t,s,p)=1(222):
Cl,Zz,Zz X Zz.

v. (t,s,p)=(2,1,4):
Cl,Zz,Zz X Zz.

vi. (t,5,p)=(2,0,6):
C1,2Z5,79 X Z,53,Z7 X S3,D1s.

vii. (t,s,p) =(1,4,1):
C1,Zo.
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viii. (t,5,p) =(1,3,3):
Cl/ZZI A3I 53'

ix. (t,s,p)=1(1,2,5):
C1,2Z5.

x. (ts,p)=(1,1,7):
C1,2Z5.

xi. (t,5,p)=(1,0,9):
Cl/ZZIA3/S3'

xii. (t,s,p)=1(0,5,2):
C1,29,79 X 2,75 X Z5,D»y.

xiii. (t,s,p) =(0,4,4):
C1, 29,79 X Zp,Zo X Zy X Zo,Dg,Z4.

xiv. (t,s,p) =(0,3,6):
C1, 29,75 X Z,A3,7Z X Z3,53,D12.

xv. (t,s,p)=1(0,2,8):
C1, 29,79 X Z3,Dg,Zy X Dg,D16,Zp X Z X Zp,Z4.

xvi. (t,s,p)=(0,1,10):
Cl,Zz,Zz X Zz.
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