
Journal of Discrete Mathematics and Its Applications 7 (1) (2022) 63–71

Journal of Discrete Mathematics and Its Applications

Available Online at: http://jdma.sru.ac.ir
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1 Introduction

Carbon atoms can bond into very large molecules. Named fullerenes, after U.S. engineer
Buckminster Fuller (1895–1983), these carbon molecules have the same symmetry as a soccer
ball, as shown in Figure 1. They are popularly called buckyballs. The most important mem-
ber of fullerene graphs is C60 fullerene with exactly 60 carbon atoms. In general, a fullerene
is a cubic planar graph having all faces 5- or 6-cycles, see Figure 2. Examples include the
20-vertex dodecahedral graph, 24-vertex generalized Petersen graph GP(12,2) and graph on
26 vertices truncated icosahedral graph.

A classical fullerene or briefly a fullerene is a cubic three connected graph whose faces
entirely composed of pentagons and hexagones and we denote it by a PH-fullerene, see [18,
19]. The non-classical fullerenes are composed of triangles and hexagones or quadrangles
and hexagones and we denote them by TH-fullerene or SH-fullerene, respectively. For see
some problems concerning with fullerene graphs and many properties of them are derived,
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Figure 1. Fullerene C60.

we refer the readers to [1, 2, 4, 7–9] as well as [11, 13, 16, 17, 20]. Fullerenes are special cases of
a larger class of graphs, namely polyhedral graphs. A polyhedral graph is a three connected
simple planar graph and in this paper, we consider only the cubic polyhedral graphs whose
faces are a combination of triangles, quadrangles, pentagons and hexagones, see [4, 6].

An automorphism of graph X = (V, E) is a bijection β on V which preserves the edge set E.
In other words, e = uv is an edge of E if and only if eβ = uβvβ is an edge of E. Here, the image
of vertex u is denoted by uβ. The set of all automorphisms of graph X with the operation of
composition is a group on V(X) denoted by Aut(X). Frucht [12] was the first who dealt with
graph automorphism. Also quantitative measures based on graph automorphism have been
developed, see [3].

Cubic polyhedral graph with t triangular, s quadrilateral, p pentagonal and h hexagonal
faces and no other faces is denoted by a (t, s, p, h)−polyhedral or briefly a (t, s, p)-polyhedral
graph. By these notations, a SPH-polyhedral graph is a planar graph whose faces are quad-
rangles, pentagons and hexagons. Let m be the number of edges in a given SPH-polyhedral
graph F. In [11] Fowler and his co-authors showed that fullerenes are realizable within 28
point groups. In [21] Kutnar et al. proved that for any PH-fullerene graph F, |Aut(F)| di-
vides 120. The present authors in [14] proved that for given TH-fullerene F, |Aut(F)| divides
24 and in [15] they proved that for given SH-polyhedral graph F, |Aut(F)| divides 48. These
results are given in the following theorem.

Theorem 1.1. We have

• the size of automorphism group of classical fullerenes divides 120 [21].

• the size of automorphism group of TSH-fullerenes divides 24, [15].

• the size of automorphism group of SPH-fullerenes divides 48, [21].

A TPH-polyhedral graph F is one whose faces are triangles, pentagons and hexagons. In
this paper, we prove the following theorem.
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Figure 2. Planar graphs of Fullerenes C20,C24 and C26.

Theorem A. Let F be a TPH-polyhedral graph. Then the automorphism group of F is a subgroup
of a {2,3,5}-group. Moreover, the order of Aut(F) divides 22 × 3.

2 Definitions and preliminaries

Let G be a group and Ω a non-empty set. An action of G on Ω denoted by (G|Ω) induces
a group homomorphism φ from G into the symmetric group SΩ on Ω, where φ(g)α = gα

(α ∈ Ω). The orbit of an element α ∈ Ω is denoted by αG and it is defined as the set of all αg

where g ∈ G. Size of Ω is called the degree of this action. The kernel of this action is denoted
by Kerφ. An action is faithful if Kerφ = {1}. The stabilizer of element α ∈ Ω is defined as
Gα = {g ∈ G|αg = α}. Let H = Gα then for α, β ∈ Ω (α ̸= β), Hβ is denoted by Gα,β. The orbit-
stabilizer theorem implies that |αG|.|Gα|= |G|. For every g ∈ G, let f ix(g) = {α ∈ X,αg = α},
then we have:
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Lemma 2.1. (Cauchy–Frobenius Lemma) Let G acts on set Ω, then the number of orbits of G is

1
|G| ∑

g∈G
| f ix(g)|.

Example 2.2. Consider the fullerene graph F96 depicted in Figure 3. If α denotes the rotation
of F96 through an angle of 60◦ around an axis through the midpoints of the front and back
faces, then the corresponding permutation is α = (1,2,3,4,5,6)(7,10,14,17,20,24)(8,11,15,18,
21,25) (9,12,16,1923,26) (13,50,58,74,66,42) (22,71,47,39,55,63) (27,28,29,30,31,32) (33,48,
56,72,64,40) (34,49,57,73,65,41)(35,51,59,75,67,43) (36,52,60,76,68,44)(37,53,61,77,69,45)
(38,54,62,78,70,46) (79,80,81,82,83,84)(85,86,87,88,89,90) (91,96,95,94,93,92). Thus, one
of orbits of subgroup ⟨α⟩ containing the vertex 1 is 1⟨α⟩ = {1,2,3,4,5,6}. Now, consider the
axis symmetry element which fixes vertices {1,4,8,18,43,44,59,60,85,88, 92,95}, the corre-
sponding permutation is β = (2,6) (3,5) (7,9) (10,26) (11,25)(12,24)(13,71) (14,23) (15,21)
(16,20) (17,19)(22,50)(27,28)(29,32)(30,31) (33,70) (34,69) (35,67) (36,68) (37,65) (38 ,64)
(39,66) (40,46) (41,45) (42,47) (48,78)(49,77)(51,75) (52,76) (53,73) (54,72) (55,74)(56,62)
(57,61)(58,63)(79,80)(81,84)(82,83)(86,90)(87,89)(91,93)(94,96).

Let G = Aut(F96), clearly G ≥ ⟨α, β⟩ and the orbit-stabilizer property implies that |G| =
|1G| × |G1|. Any symmetry of the polyhedral graph F96 which fixes vertex 1 must also fixes
the opposite vertex 4. By applying orbit-stabilizer property, we found that |G1| = |4G1 | ×
|G1,4|. It is easy to prove that |G1,4| = 2 and hence |G| = 12. On the other hand, |⟨α, β⟩| = 12,
where α4 = β2 = 1, β−1αβ = α−1. This leads us to conclude that G = ⟨α, β⟩ ∼= D12.

Example 2.3. Here, we compute the order of automorphism group of polyhedral graph F48

depicted in Figure 4. Similar to the last example, if α denotes the rotation of F48 through an
angle of 90◦ around an axis through the midpoints of the front and back faces, then the corre-
sponding permutation is α = (1,3,5,7) (2,4,6,8)(9,15,26,21) (10,16,27,32) (11,17,28,22)(12,
29,23)(13,19,30,24)(14,20,31,25)(33,45,41,37)(34,46 ,42,38)(35,47,43,39)(36,48,44,40). Thus
1⟨α⟩ = {1,3,5,7} and consider the axis symmetry element which fixes no vertices:
β= (1,2)(3,8)(4,7)(5,6)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(21,31)(22,29)(23,28)(24,
27)(25,26)(30,32)(33,40)(34,39)(35,38)(36,37)(41,48)(42,47)(43,46)(44,45).

If G = Aut(F48), then |G|= |2G| × |G2| while no element fixes 2. This means that |G2|= 1
and so |G|= |2G|. It is clear that 2⟨α,β⟩ = {1,2,3,4,5,6,7,8} and thus |2⟨α,β⟩|= 8. Similar to the
last example, we can see that |⟨α, β⟩|= 8, where α4 = β2 = 1 and β−1αβ = α−1, hence Aut(F48)

is isomorphic with dihedral group D8.

3 Main results

Lemma 3.1. Let F be a TPH-polyhedral graph, with automorphism group Aut(F). Then the stabilizer
Aut(F)(u,v,w) of 2-arc (u,v,w) is trivial.
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Figure 3. Labeling of fullerene F96.

Proof. It is similar to the proof of [21, Lemma 2].

Proposition 3.2. Let F be a TPH-polyhedral graph with automorphism group Aut(F) and u ∈ V(F).
Then the stabilizer Aut(F)u of u is trivial or it is isomorphic to one of three groups: the cyclic group
Z2, the cyclic group Z3 and the symmetric group S3.

Proof. It is similar to the proof of [21, Lemma 2].

Proof of Theorem A. Let F be a TPH-polyhedral graph with a non-trivial automorphism
group, T (F) be the set of triangles of F and P(F) be the set of pentagons of F. Let A = Aut(F)
and t, p be the number of triangles and pentagons, respectively. We can see that

|G| = |KO| × |(G/KO)T| × |O| = 2α.3β.|O|,

and so
|G| = 2α.3β.5γ.|O′|.

We distinguish the following cases:

Case 1. t = 1 and p = 9. We claim that |Aut(F)| divides 3 × 2. Suppose 22 divides |A| and
Syl2(A) is of order 22. The order of orbits of T (F) is 1. By orbit- stabilizer theorem,
we have |KT| = 22, a contradiction. Let |Syl5(A)| = 5, then |KT| = 5, a contradiction. If
|Syl3(A)| = 32, then we have |KT| = 32, a contradiction.
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Figure 4. Labeling of fullerene F48.

Case 2. t = 2 and p = 6, we show that |Aut(F)| divides 3 × 22. Suppose 23 divides |A|
and Syl2(A) is of order 23. Let Syl2(A) acts on triangles, then for an orbit O of this
action, we have |O| = 1 or 2. By orbit-stabilizer theorem, if |O| = 1, then |KT| = 23, a
contradiction and if |O| = 2, then |KT| = 22, a contradiction. Let |Syl5(A)| = 5, then
|KT| = 5, a contradiction. If |Syl3(A)| = 32, then we have |O| = 1 and so |KT| = 32, a
contradiction.

Case 3. t = 3 and p = 3, we prove that |Aut(F)| divides 3× 22. Let 23 divides |A| and Syl2(A)

be of order 23 acting on the set of triangles T . Hence, |O| = 1 or 2, similar to the last
discussion, both of them are contradictions. Also, |Syl5(A)| = 5 is a contradiction. If
|Syl3(A)| = 32, then the orbits of the action Syl3(A) on P(F) are of order 3 and so
|KP| = 3, a contradiction.

It should be noted that in a given polyhedral F, no two triangles are adjacent, since F is
three connected.

Theorem 3.3. Let F be a TSH-polyhedral graph. Then Aut(F) is a subgroup of a {2,3}-group.
Moreover, the order of Aut(F) divides 24.

Proof. By using Euler’s theorem, if s = 0, then t = 4 and then F be TH- fullerene. On the other
hand, if s = 6, then t = 0 and F is a SH-fullerene. Let F is a TSH-polyhedral graph with at
least one triangle and one square. We show that |Aut(F)| divides 24. First, we prove that
the Syl2(F) is of order 8. Suppose on the contrary that 24 divides |A| and Syl2(A) is of order
24. Let Syl2(A) acts on the set of triangles, clearly the order of an orbit of an this action is
1 or 2. By orbit-stabilizer theorem, if |O| = 1, then |KT| = 23, a contradiction and if |O| = 2,
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then |KT| = 22, a contradiction. Also |Syl5(A)| = 5 yields a contradiction. If |Syl3(A)| = 32,
|Kq| = 32 or |Kq| = 3, then we have a contradiction. This completes the proof.

In [6] the authors derived the list of allowed symmetry groups for each class they con-
structed the smallest polyhedron for each allowed symmetry. In other words, we have two
following theorems, see [5, 10, 11].

Theorem 3.4. For the bifaced cubic polyhedra described by the triple (t, s, p), the possible point groups
and vertex counts of minimal examples are

i. (t, s, p) = (4,0,0):
Z2 × Z2,Z2 × Z2 × Z2, D8, A4,S4.

ii. (t, s, p) = (0,6,0) :
C1,Z2,Z2 × Z2,S3, D8,Z2 × Z2 × Z2,
Z2 × S3, D12, D6,Z2 × D12,Z2 × D6,Z2 × Z2 × D6.

iii. (t, s, p) = (0,0,12) :
C1,Z2, A3, ,Z4,Z2 × Z2,S3,S6,S3,Z2 × Z3,Z2 × Z2 × Z2, D8,Z2 × Z5, D12,Z2 × S3,
A4, D20,Z2 ⋉ D12, D24,S4, A4 × Z2, A5,Z2 × A5.

Theorem 3.5. For cubic polyhedra with at least two face sizes chosen from {3,4,5} and no face of size
greater than 6 described by the triple (t, s, p), the possible point groups and vertex counts of minimal
examples are

i. (t, s, p) = (3,1,1):
C1,Z2.

ii. (t, s, p) = (3,0,3) :
C1,Z2, A3,S3,Z2 × Z3.

iii. (t, s, p) = (2,3,0) :
C1,Z2,Z2 × Z2,S3, D12.

iv. (t, s, p) = (2,2,2) :
C1,Z2,Z2 × Z2.

v. (t, s, p) = (2,1,4) :
C1,Z2,Z2 × Z2.

vi. (t, s, p) = (2,0,6) :
C1,Z2,Z2 × Z2,S3,Z2 × S3, D12.

vii. (t, s, p) = (1,4,1) :
C1,Z2.
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viii. (t, s, p) = (1,3,3) :
C1,Z2, A3,S3.

ix. (t, s, p) = (1,2,5) :
C1,Z2.

x. (t, s, p) = (1,1,7) :
C1,Z2.

xi. (t, s, p) = (1,0,9) :
C1,Z2, A3,S3.

xii. (t, s, p) = (0,5,2) :
C1,Z2,Z2 × Z2,Z2 × Z5, D20.

xiii. (t, s, p) = (0,4,4) :
C1,Z2,Z2 × Z2,Z2 × Z2 × Z2, D8,Z4.

xiv. (t, s, p) = (0,3,6) :
C1,Z2,Z2 × Z2, A3,Z2 × Z3,S3, D12.

xv. (t, s, p) = (0,2,8) :
C1,Z2,Z2 × Z2, D8,Z2 × D8, D16,Z2 × Z2 × Z2,Z4.

xvi. (t, s, p) = (0,1,10) :
C1,Z2,Z2 × Z2.
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