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1 Introduction

Let G be a simple connected graph in chemical graph theory. In mathematical chemistry,
a molecular graph is a simple graph such that its vertices correspond to the atoms and the
edges to the bonds. Also a connected graph is a graph such that there is a path between all
pairs of vertices. Note that hydrogen atoms are often omitted [5].

Mathematical chemistry is a branch of theoretical chemistry for discussion and predic-
tion of the molecular structure using mathematical methods without necessarily referring to
quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which
applies graph theory to mathematical modelling of chemical phenomena [8, 17, 21, 22]. This

*Corresponding author (Email address: rachukanabur@gmail.com)
Received 26 January 2024; Revised 06 February 2024; Accepted 20 February 2024
First Publish Date: 01 March 2024

©Shahid Rajaee Teacher Training University17

http://jdma.sru.ac.ir
mailto: rachukanabur@gmail.com


Shigehalli et al. / Journal of Discrete Mathematics and Its Applications 9 (2024) 17–30

theory had an important effect on the development of the chemical sciences.
All molecular graphs considered in this paper are finite, connected, loopless, and without

multiple edges. Let G = (V, E) be a graph with n vertices and m edges. The degree of a vertex
u ∈ V(G) is denoted by dG(u) and is the number of vertices that are adjacent to u. The edge
connecting the vertices u and v is denoted by uv [9].

2 Computing the topological indices of certain nanotube

Motivated by previous research on certain nanotube, here we introduce six new topo-
logical indices and compute their corresponding topological index value of certain nan-
otube [10, 11, 13, 18–20].

Carbon nanotubes, long, thin cylinders of carbon, were discovered in 1991 by S. Iijima.
These are large macromolecules that are unique for their size, shape, and remarkable phys-
ical properties. They can be thought of as a sheet of graphite (a hexagonal lattice of carbon)
rolled into a cylinder. These intriguing structures have sparked much excitement in recent
years and a large amount of research has been dedicated to their understanding. Currently,
the physical properties are still being discovered and disputed. Nanotubes have a very broad
range of electronic, thermal, and structural properties that change depending on their differ-
ent kinds (defined by its diameter, length, chirality, or twist). To make things more inter-
esting, besides having a single cylindrical wall (SWNTs), nanotubes can have multiple walls
(MWNTs)–cylinders inside other cylinders. Recent work on computing topological indices
of certain nanotube can be seen in [10, 11, 14].

The distance between two vertices a and b is denoted as dH(a,b) and is the length of
shortest path between a and b in graph H. The length of shortest path between a and b is also
called a-b geodesic. The longest path between any two vertices is called a-b detour.

In this paper, H is considered to be simple connected graph with vertex set V(H) and
edge set E(H), da is the degree of vertex a ∈ V(H) and

Sa = ∑
b∈NH(a)

d(b),

where NH = {b ∈ V(H) \ ab ∈ E(H)}. The notations used in this paper, are mainly taken
from books [4, 21]. Now, we propose the following topological indices and compute their
value for certain nanotube.

2.1 Geometric-arithmetic- (GA1) index

Let G = (V, E) be a molecular graph, and du be the degree of the vertex u. Then GA1

index of G is defined as

GA1(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2
√

dG(u).dG(v)
,

where GA1 index is considered for distinct vertices. The above equation is the sum of the
ratio of the arithmetic mean and geometric mean of u and v, where dG(u) (or dG(v)) denotes
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Figure 1. A 2D-lattice of H-naphtalenic nanotube NPHX[m,n] showing the edge partition based on
the degrees of end vertices of each edge.

the degree of the vertex u (or v).

2.2 SK index

The SK index of a graph G = (V, E) is defined as

SK(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2

,

where dG(u) and dG(v) are the degrees of the vertices u and v in G.

2.3 SK1 index

The SK1 index of a graph G = (V, E) is defined as

SK1(G) = ∑
u,v∈E(G)

dG(u).dG(v)
2

,

where dG(u) and dG(v) are the product of the degrees of the vertices u and v in G.

2.4 SK2 index

The SK2 index of a graph G = (V, E) is defined as

SK2(G) = ∑
u,v∈E(G)

(
dG(u) + dG(v)

2

)2

,

where dG(u) and dG(v) are the product of the degrees of the vertices u and v in G.

2.5 SK3 index

The SK3 index of a graph G = (V, E) is defined as

SK3(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2

,
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where SG(u) and SG(v) are the summation of the degrees of all neighbours of vertices u and
v in G.

SG(u) = ∑
u,v∈E(G)

dG(u),

NG(u) = {v ∈ V(G)|uv ∈ E(G)}.

2.6 Geometric-arithmetic (GA2) index

Let G = (V, E) be a molecular graph, and Su is the degree of the vertex u, then GA2 index
of G is defined as

GA2(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2
√

SG(u).SG(v)
,

where GA2 index is considered for distinct vertices. The above equation is the sum of the
ratio of the arithmetic mean and geometric mean of u and v, where SG(u) (or SG(v)) is the
summation of degrees of all neighbours of vertex u (or v).

SG(u) = ∑
u,v∈E(G)

dG(u),

NG(u) = {v ∈ V(G)/uv ∈ E(G)} .

In this paper, we study certain degree based topological indices of H-naphtalenic nan-
otubes and TUC4[m,n] nanotube. These topological indices correlate certain physico-chemical
properties of these nanotubes.

3 Main Results

In this paper, we study GA1, SK, SK1, SK2, SK3 and GA2 indices of H-naphtalenic nan-
otube and TUC4[m,n] nanotube.

3.1 Results for H-naphtalenic nanotubes

In this section, we compute the certain topological indices for H-naphtalenic nanotubes.
This nanotube is a trivalent decoration having sequence of C6, C6, C4, C6, C6, C4, ... in first row
and a sequence of C6, C8, C6, C8, ... in other rows. In other words, the whole lattice is a plane
tiling that can either cover a cylinder or a torus. These nanotubes are usually symbolized as
NPHX[m,n], in which m is the number of pair of hexagons in first row and n is the number
of alternative hexagons in a column as depicted in Figure 1. Now we compute certain degree
based topological indices for this class of nanotubes. We can clearly see that there are two
type of edges in 2D-lattice of this nanotube, as shown by different colours in Figure 1, the
colour red shows the edges ab and da = 2 and db = 3 and the colour black shows the edges
ab with da = db = 3. Table 1 shows cardinalities of these two partite series of edge set of
NPHX[m,n] nanotube.
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(da, db) where a,b ∈ E(H) (2,3) (3,3)
Number of edges 8m 15mn − 10m

Table 1. Edge partition of 2D-lattice of H-naphtalenic nanotubes based on degrees of end vertices of
each edge.

Theorem 3.1. Consider the graph of NPHX[m,n] nanotubes, then its GA1 index is equal to

GA1(NPHX[m,n]) = (15n + 20 − 10
√

6)m.

Proof. Consider the graph of NPHX[m,n]. By using the edge partition based on the degrees
of end vertices with respect to each edge on graph of NPHX[m,n] nanotube given in Table 1,
we compute the GA1 index of NPHX[m,n] nanotube.

GA1(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2
√

dG(u).dG(v)
.

GA1(NPHX(n)) = 8m
(

2 + 3
2
√

6

)
+ (15mn − 10m)

(
3 + 3
2
√

9

)
=

20m√
6
+ 15mn − 10m

= 15mn +

(
20√

6
− 10

)
m

=
(

15n + 20 − 10
√

6
)

m.

Theorem 3.2. Consider the graph of NPHX[m,n] nanotubes, then its SK index is equal to

SK(NPHX[m,n]) = (45n − 10)m.

Proof. Consider the graph of NPHX[m,n]. By using the edge partition based on the degrees
of end vertices with respect to each edge on graph of NPHX[m,n] nanotube given in Table 1,
we compute the SK index of NPHX[m,n] nanotube.

SK(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2

.

SK(NPHX(n)) = 8m
(

2 + 3
2

)
+ (15mn − 10m)

(
3 + 3

2

)
= 20m + 45mn − 30m

= 45mn − 10m

= (45n − 10)m.
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Theorem 3.3. Consider the graph of NPHX[m,n] nanotubes, then its SK1 index is equal to

SK1(NPHX[m,n]) =
1
2
(135n − 42)m.

Proof. Consider the graph of NPHX[m,n]. By using the edge partition based on the degrees
of end vertices with respect to each edge on graph of NPHX[m,n] nanotube given in Table 1,
we compute the SK1 index of NPHX[m,n] nanotube.

SK1(G) = ∑
u,v∈E(G)

dG(u).dG(v)
2

.

SK1(NPHX(n)) = 8m
(

2 × 3
2

)
+ (15mn − 10m)

(
3 × 3

2

)
= 24m + (15mn − 10m)

9
2

=
1
2
(48m + 135mn − 90m)

=
1
2
(135n − 42)m.

Theorem 3.4. Consider the graph of NPHX[m,n] nanotubes, then its SK2 index is equal to

SK2(NPHX[m,n]) = (135n − 40)m.

Proof. Consider the graph of NPHX[m,n]. By using the edge partition based on the degrees
of end vertices with respect to each edge on graph of NPHX[m,n] nanotube given in Table 1,
we compute the SK2 index of NPHX[m,n] nanotube.

SK2(G) = ∑
u,v∈E(G)

(
dG(u) + dG(v)

2

)2

.

SK2(NPHX(n)) = 8m
(

2 + 3
2

)2

+ (15mn − 10m)

(
3 + 3

2

)2

= 50m + 135mn − 90m

= (135n − 40)m.

Now we compute two important topological indices GA2 and SK3 for 2D-lattice of
NHPX[m,n] nanotube. There are six types of edges in NHPX[m,n] nanotube based on the
degree sum of vertices lying at unit distance from end vertices of each edge as depicted in
Figure 2, in which different colours shows different partite sets of edge set of NHPX[m,n]
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(Sa, Sb) where u,v ∈ E(H) (6,7) (6,8) (8,8) (7,9) (8,9) (9,9)
Number of edges 4m 4m 2m 2m 4m 15mn − 18m

Table 2. Edge partition of graph of NHPX[m,n] nanotubes based on degree sum of vertices lying at
unit distance from end vertices of each edge.

Figure 2. A graph of H-naphtalenic nanotube NPHX[m,n] showing different partite sets based on
the degree sum of neighbours of end vertices of each edge.

nanotube. In Figure 2, red colour shows the edges ab with Sa = 6 and Sb = 7, blue colour
shows the type of edges ab with Sa = 6 and Sb = 8, green colour shows the type of edges ab
with Sa = Sb = 8, yellow colour shows the type of edges ab with Sa = 7 and Sb = 9, brown
colour shows the type of edges ab with Sa = 8 and Sb = 9 and black colour shows the partition
having edges ab with Sa = Sb = 9.

In Table 2, cardinalities of such partite series of edge set of graph of NHPX[m,n] nanotube
are shown. In the following theorem, GA2 index of NHPX[m,n] nanotube and SK3 index of
NHPX[m,n] nanotube is computed.

Theorem 3.5. Consider the graph of NPHX[m,n] nanotube, then its GA2 index is equal to

GA2(NPHX[m,n]) =
(

15n +
26√
42

+
28√
48

+
16√
63

+
34√
72

− 16
)

m.

Proof. We use the edge partition of graph of NPHX[m,n] nanotube based on the degree sum
of vertices lying at unit distance from end vertices of each edge. Now by using the par-
tition given in Table 2 we can apply the formula of GA2 index to compute this index for
NPHX[m,n] nanotube.

GA2(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2
√

SG(u).SG(v)
.
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GA2(NPHX(n)) = 4m
(

6 + 7
2
√

42

)
+ 4m

(
6 + 8
2
√

48

)
+ 2m

(
8 + 8
2
√

64

)
+ 2m

(
7 + 9
2
√

63

)
+ 4m

(
8 + 9
2
√

72

)
+ (15mn − 8m)

(
9 + 9
2
√

81

)
=

26m√
42

+
28m√

48
+ 2m +

16m√
63

+
34m√

72
+ 15mn − 18m

=

(
15n +

26√
42

+
28√
48

+
16√
63

+
34√
72

− 16
)

.

Theorem 3.6. Consider the graph of NPHX[m,n] nanotube, then its SK3 index is equal to

SK3(NPHX[m,n]) = (135n − 42)m.

Proof. We use the edge partition of graph of NPHX[m,n] nanotube based on the degree sum
of vertices lying at unit distance from end vertices of each edge. Now by using the partition
given in Table 2 we can apply the formula of SK3 index to compute this index for NPHX[m,n]
nanotube.

SK3(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2

.

SK3(NPHX(n)) = 4m
(

6 + 7
2

)
+ 4m

(
6 + 8

2

)
+ 2m

(
8 + 8

2

)
+ 2m

(
7 + 9

2

)
+ 4m

(
8 + 9

2

)
+ (15mn − 8m)

(
9 + 9

2

)
= 26m + 28m + 16m + 34m + 135mn − 162m

= (135n − 42)m.

3.2 Results for nanotubes coverd by C4

In this section, we compute certain topological indices of nanotube covered only by C4.
The 2D-lattice of this family of nanotubes is a plane tiling of C4. This tessellation of C4 can
either cover a cylinder or a torus. This family of nanotubes is denoted by TUC4[m,n], in
which m is the number of squares in a row and n is the number of squares in a column as
shown in Figure 4. A 3D representation of TUC4[m,n] nanotubes is depicted in Figure 3.
There are three types of edges in 2D-lattice of TUC4[m,n] nanotube based on degrees of end
vertices of each edge. Figure 3, explains such a partition of edges in which red coloured edges
are the edges ab with da = db = 3, blue coloured edges are the edges ab with da =3, db = 4 and
black coloured edges are the edges ab with da = db = 4. Table 3 shows the number of edges
in each partite set.

Theorem 3.7. Consider the graph of TUC4[m,n] nanotubes, then its GA1 index is equal to

GA1(TUC4[m,n]) =
(

2n +
7√
12

− 1
)
(m + 1) .
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Figure 3. A TUC4[6,n] nanotube covered by C4.

Figure 4. A graph of TUC4[m,n] nanotube showing the edge partition based on the degree of end
vertices of each edge.

Proof. Consider the graph of TUC4[m,n]. By using the edge partition based on the degrees of
end vertices with respect to each edge on graph of TUC4[m,n] nanotube given in Table 3, we
compute the GA1 index of TUC4[m,n] nanotube.

GA1(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2
√

dG(u).dG(v)
.

GA1 (TUC4 [m,n]) = (2m + 2)
(

3 + 3
2
√

9

)
+ (2m + 2)

(
3 + 4
2
√

12

)
+ (m + 1) (2n − 3)

(
4 + 4
2
√

16

)
= (2m + 2) + (2m + 2)

(
7

2
√

12

)
+ (m + 1) (2n − 3)
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(da, db) where u,v ∈ E(H) (3,3) (3,4) (4,4)
Number of edges (2m + 2) (2m + 2) (m + 1)(2n − 3)

Table 3. Cardinalities of different partite sets based on degrees of end vertices of each edge of graph
of TUC4[m,n] nanotube.

= 2mn +

(
7

2
√

12

)
− m +

(
7

2
√

12

)
− 1

=

(
2n +

7√
12

− 1
)
− m +

7
12

− 1 + 2n

=

(
2n +

7√
12

− 1
)
(m + 1) .

Theorem 3.8. Consider the graph of TUC4[m,n] nanotubes, then its SK index is equal to

SK(TUC4[m,n]) = (8n + 1) (m + 1) .

Proof. Consider the graph of TUC4[m,n]. By using the edge partition based on the degrees of
end vertices with respect to each edge on graph of TUC4[m,n] nanotube given in Table 3, we
compute the SK index of TUC4[m,n] nanotube.

SK(G) = ∑
u,v∈E(G)

dG(u) + dG(v)
2

.

SK (TUC4 [m,n]) = (2m + 2)
(

3 + 3
2

)
+ (2m + 2)

(
3 + 4

2

)
+ (m + 1) (2n − 3)

(
4 + 4

2

)
= 6m + 6 + 7m + 7 + (2mn − 3m + 2n − 3)4

= (8n + 1)m + 8n + 1

= (8n + 1) (m + 1) .

Theorem 3.9. Consider the graph of TUC4[m,n] nanotubes, then its SK1 index is equal to

SK1(TUC4[m,n]) = (16n − 3) (m + 1) .

Proof. Consider the graph of TUC4[m,n]. By using the edge partition based on the degrees of
end vertices with respect to each edge on graph of TUC4[m,n] nanotube given in Table 3, we
compute the SK1 index of TUC4[m,n] nanotube.

SK1(G) = ∑
u,v∈E(G)

dG(u).dG(v)
2

.
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SK1 (TUC4 [m,n]) = (2m + 2)
(

3 × 3
2

)
+ (2m + 2)

(
3 × 4

2

)
+ (m + 1) (2n − 3)

(
4 × 4

2

)
= 9m + 9 + 12m + 12 + (2mn − 3m + 2n − 3)8

= (16n − 3)m + 16n + 1

= (16n − 3) (m + 1) .

Theorem 3.10. Consider the graph of TUC4[m,n] nanotubes, then its SK2 index is equal to

SK2(TUC4[m,n]) =
1
2
(64n − 11) (m + 1) .

Proof. Consider the graph of TUC4[m,n]. By using the edge partition based on the degrees of
end vertices with respect to each edge on graph of TUC4[m,n] nanotube given in Table 3, we
compute the SK2 index of TUC4[m,n] nanotube.

SK2(G) = ∑
u,v∈E(G)

(
dG(u) + dG(v)

2

)2

.

SK2(TUC4[m,n])) = (2m + 2)
(

3 + 3
2

)2

+ (2m + 2)
(

3 + 4
2

)2

+ (m + 1) (2n − 3)
(

4 + 4
2

)2

= (2m + 2)9 + (2m + 2)
(

49
4

)
+ (2mn − 3m + 2n − 3)16

=
1
2
(64mn − 11m + 64n − 11)

=
1
2
(
(64n − 11)m + 64n − 11

)
=

1
2
(64n − 11) (m + 1) .

Now we compute GA2 and SK3 indices for two dimensional lattice of TUC4[m,n] nan-
otubes. There are five types of edges in the graph of TUC4[m,n] nanotube based on degree
sum of vertices lying at unit distance from end vertices of each, as shown in Figure 5, in
which red coloured edges are the edge ab with Sa = Sb = 7, blue coloured edges are the edge
ab with Sa = 7 and Sb = 15, green coloured edges are the edge ab with Sa = Sb = 15, yellow
coloured edges are the edge ab with Sa = 15 and Sb = 16, and black coloured edges are the
edge ab with Sa = Sb = 16 . Table 4 shows the cardinalities of these partite sets.

Theorem 3.11. Let TUC4[m,n] nanotube be a graph with (m ≥ 1,n ≥ 4), then its GA2 index is

GA2(TUC4[m,n]) =
(

2n − 3 +
22√
105

+
31√
240

)
(m + 1) .
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Figure 5. A graph of TUC4[m,n] nanotube showing the edge partition based on the degree sum of
end vertices lying at unit distance from end vertices of each edge.

Table 4. Edge partition of graph of TUC4[m,n] nanotube based on degree sum of vertices lying at
unit distance from end vertices of each edge.

(Sa, Sb) where u,v ∈ E(H) (7,7) (7,15) (15,15) (15,16) (16,16)
Number of edges (2m + 2) (2m + 2) (2m + 2) (2m + 2) (m + 1)(2n − 7)

Proof. We use the edge partition of graph of TUC4[m,n] nanotube based on the degree sum
of vertices lying at unit distance from end vertices of each edge.

Now by using the partition given in Table 4 we can apply the formula of GA2 index to
compute this index for TUC4[m,n] nanotube.

GA2(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2
√

SG(u).SG(v)
.

GA2(TUC4[m,n]) = (2m + 2)
(

7 + 7
2
√

49

)
+ (2m + 2)

(
7 + 15
2
√

105

)
+ (2m + 2)

(
15 + 15
2
√

225

)
+ (2m + 2)

(
15 + 16
2
√

240

)
+ (m + 1) (2n − 7)

(
16 + 16
2
√

256

)
= 2m + 2 +

22m + 22√
105

+ 2m + 2 +
31m + 31√

240
+ 2mn − 7m + 2n − 7

= 2mn − 3m + 2n − 3 +
22m + 22√

105
+

31m + 31√
240

=

(
2n − 3 +

22√
105

+
31√
240

)
m +

(
2n − 3 +

22√
105

+
31√
240

)
=

(
2n − 3 +

22√
105

+
31√
240

)
(m + 1) .
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Theorem 3.12. Let TUC4[m,n] nanotube be a graph with (m ≥ 1,n ≥ 4), then its SK3 index is

SK3(TUC4[m,n]) = (32n − 15) (m + 1) .

Proof. We use the edge partition of graph of TUC4[m,n] nanotube based on the degree sum
of vertices lying at unit distance from end vertices of each edge. Now by using the partition
given in Table 4, we can apply the formula of GA2 index to compute this index for TUC4[m,n]
nanotube.

SK3(G) = ∑
u,v∈E(G)

SG(u) + SG(v)
2

.

SK3(TUC4[m,n]) = (2m + 2)
(

7 + 7
2

)
+ (2m + 2)

(
7 + 15

2

)
+ (2m + 2)

(
15 + 15

2

)
+ (2m + 2)

(
15 + 16

2

)
+ (m + 1) (2n − 7)

(
16 + 16

2

)
= 14m + 14 + 22m + 22 + 30m + 30 + 31 + (2mn − 7m + 2n − 7)16

= 32mn − 15m + 32n − 15

= (32n − 15)m + 32n − 15

= (32n − 15) (m + 1) .

Concluding Remarks: A generalized formula for geometric-arithmetic index (GA1 index),
SK index, SK1 index, SK2 index, SK3 index, GA2 index for H-naphtalenic nanotube and
TUC4[m,n] nanotube is obtained without using a computer.
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