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ABSTRACT. The Hosoya polynomial of a molecular graph ܩ is defined as ܩ)ܪ, (ݔ =
∑ (ீ)ௗ(௨,௩){௨,௩}⊆௏ݔ , where the sum is over all unordered pairs {ݑ,  In .ܩ of distinct vertices in {ݒ
this paper we arrange the main result about the Hosoya polynomial of armchair polyhex, Zig-
Zag, TUC4C8(R/S) nanotubes and nanotorus according to Ref.s [23-27].  
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1. INTRODUCTION  
Nanotubes and nanotorus are an important category of nanostructured materials can 
be prepared from carbon [1]. These materials are usually represented as molecular 
graph where the vertices of graph correspond to the atoms and the edges correspond 
to the chemical bonds. A topological index of a chemical compound is a number 
related to the molecular graph of compound, describing some of its physic-chemical 
properties. Such numbers based on the distances in a graph are widely used for 
establishing relationships between the structure of molecules and their physico-
chemical properties [2,3]. 

We now recall some graph theoretical notations that will be used in this paper. 
Let G be a simple molecular graph without directed and multiple edges without loops 
and with vertex and edge sets V(G) and E(G), respectively. Suppose u and v are two 
vertices of G. A path between u and v is a sequence of vertices and edges where 
connect this vertices and the length of path is the number of edges of it. The distance 
between u and v is a path with minimum cardinality and denoted by d(u,v). The 
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function d(-,-) is a metric function on vertex set of G. The diameter of G is the 
maximum distance between any pair of vertices, and it is denoted by diam(G) [4].  

Hosoya polynomial is a counting polynomial introduced by Hosoya in [5] and 
he proposed the Wiener polynomial for given molecular graph G for the first time. The 
roots and coefficients of this polynomial are used for the characterization of 
topological nature of some chemical compounds. Eventually, it was renamed into 
“Hosoya polynomial” [6], which name is nowadays most frequently used in the 
mathematical and mathematico-chemical literature; for further details and references 
see [7]. The Hosoya polynomial ܹ(ܩ,  is defined as the summation ,ݔ in the variable (ݔ
of all terms ݀(ܩ,  ௞, where d(G,k) denotes the number of pairs of vertices of theݔ(݇
graph G whose distance is k. Evidently, d(G,0) and d(G,1) are, respectively, equal to 
the number of vertices and edges of G, and therefore Hosoya polynomial is a 
polynomial of degree diam(G) [8]. 

Suppose ܩ is a molecular graph with vertex set ܸ(ܩ) = ,ଵݒ} ,ଶݒ … ,  ௡}. Letݒ
	ܦ = 	 ൣ݀௜,௝൧௡×௡ denotes the distance matrix of ܩ, where ݀௜,௝ = ,௜ݒ)݀  ௝). Anotherݒ
equivalent way to write the Hosoya polynomial is  

,ܩ)ܹ (ݔ =
1
2෍෍ݔௗ೔,ೕ

௡

௜ୀଵ

௡

௝ୀଵ

. 

The Hosoya polynomial of G satisfies in the following conditions: 
൫ܹ(ܩ, ൯(ݔ

ᇱቚ
௫ୀଵ

= ,ܩ)ܹݔ൫ ,(ܩ)ܹ ൯(ݔ
ᇱᇱቚ
௫ୀଵ

= ,ܩ)ଶܹݔand ൫ (ܩ)2ܹܹ ൯(ݔ
ᇱᇱᇱቚ

௫ୀଵ
=

 where W(G), WW(G) and TSZ(G) are Wiener index [9], hyper-Wiener index ,(ܩ)6ܼܶܵ
[10] and Tratch−Stankevich−Zeϐirov index [11].  

Diudea and his co-authors introduced firstly the problem of computing 
topological indices of nanomaterials [12-17] and he takes the armchair, zig-zag and 
TUC4C8(R/S) nanotubes into consideration and computed the Wiener index of these 
nanostructures. Ashrafi and co-authors computed the Wiener index of a polyhex and 
TUC4C8(R/S) nanotori [18-22]. In this paper, we arrange the main results about the 
computing the Wiener polynomial of armchair polyhex, zig-zag, TUC4C8(R/S) 
nanotubes and nanotori [23-27].  

 

2. Main Results and Discussions  
 

In this section we present the Hosoya polynomial of four classes of carbon nanotubes 
depicted in Figure 1.  
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Figure 1. The Armchair Polyhex, Zig-Zag Polyhex, TUC4C8(S) and TUC4C8(R) 

Nanotubes. 

 

2.1 Armchair polyhex carbon nanotube and nanotori 
 

Let TUVC6[݉, ݊] be the 2–dimensional lattice of Armchair polyhex nanotube, where ݉ 

is the number of rows and ݊ is the number of zig-zags, and ܸ(TUVC6[݉, ݊]) =

,݅)ݒ} ݆): 1 ≤ ݅ ≤ ݉, 1 ≤ ݆ ≤ ݊} Figure 2. Define a distance matrix ܦ௩(ଵ,ଵ) = [݀௜,௝
௩(ଵ,ଵ)] 

related to vertex ݒ(݅, ݆) as a base vertex, where ݀௜,௝
௩(ଵ,ଵ) is the distance between the base 

vertex (1,1)ݒ and ݒ(݅, ݆).  

 
Figure 2. The 2–Dimensional Fragment of an Armchair Polyhex Nanotube. 
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Now, we consider two new matrices as follows:  

Matrix ܣ) The first matrix is  ܣቀ೙మାଵቁ×௡
= ൣܽ௜,௝൧, where ܽଵ,ଵ = 0, ܽଶ,ଵ = 1,ܽଶ,ଶ = 2, 

ܽଵ,௡ = 3, ܽଶ,௡ = 2, ܽଵ,௝ = ൜
ܽଵ,௝ିଵ + 3, 2 ∤ ݆
ܽଵ,௝ିଵ + 1,				2|݆	 	ቀ2 ≤ ݆ ≤ ௡

ଶ
+ 1ቁ, 

ܽଵ,௝ = ൜
ܽଵ,௝ିଵ + 1, 2 ∤ ݆
ܽଵ,௝ିଵ + 3,				2|݆	 	ቀ

௡
ଶ
+ 2 ≤ ݆ ≤ ݊ − 1ቁ, ܽଶ,௝ = ൜

ܽଶ,௝ିଵ + 1, 2 ∤ ݆
ܽଶ,௝ିଵ + 3,				2|݆	 	ቀ2 ≤ ݆ ≤ ௡

ଶ
+ 1ቁ, 

ܽଵ,௝ = ൜
ܽଵ,௝ିଵ + 3, 2 ∤ ݆
ܽଵ,௝ିଵ + 1,				2|݆	 	ቀ

௡
ଶ
+ 2 ≤ ݆ ≤ ݊ − 1ቁ. Other entries of matrix ܣ is obtained 

from the first and second rows by equations ܽ௜,௝ = ܽଵ,௝  where 2 ∤ ݅, and  ܽ௜,௝ = ܽଶ,௝ , 

otherwise. 

Matrix ܤ) The second matrix is ܤቀ೙మାଵቁ×௡
= ൣ ௜ܾ,௝൧, where 

ܾ೙
మାଵ,௝

= ൝
௡
ଶ
+ ݆ − 1,						݆ ≤ ௡

ଶ
+ 1

ଷ௡
ଶ
− ݆ + 1,				݆ > ௡

ଶ
+ 1	

 and ௜ܾ,௝ = ௜ܾାଵ,௝ − 1	 ቀ1 ≤ ݅ ≤ ௡
ଶ
ቁ.  

Then the entries of distance matrix of TUVC6[݉, ݊] related to the base vertex 

is equals to ݀௜,௝ (1,1)ݒ
௩(ଵ,ଵ) = ൝

max൛ܽ௜,௝ , ௜ܾ,௝ൟ ,						݆ ≤
௡
ଶ
+ 1

݀௜ିଵ,௝ ,																					݆ >
௡
ଶ
+ 1	

 . Suppose Δଵ, Δଶ, …, Δ௠  are 

rows of ܦ௩(ଵ,ଵ) and Define permutation functions ߙ௜  and ߚ௝  as follow: 














1211
121

imii
mii

i ......
......

 , 














1132
121

jnnjnjn
njj

j ......
......

  ; ݆ is odd, 














1111
2121

jnnjj
njjj

j ......
......

  ; ݆ is even. 

It is easy to see that, for an arbitrary vertex ݒ(݅, ݆) of TUVC6[݉, ݊], the distance 

matrix ܦ௩(௜,௝) related to this vertex is obtained by the equation ܦ௩(௜,௝) =  ௩(ଵ,ଵ). Byܦ௜ߙ௝ߚ
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this equation, we enumerate the entries of distance matrix ܦଵ = ,݉]TUVC6)ܦ ݊]). The 

entries of Δଵ are appear ݉݊ times in ܦଵ and the entries of Δ௜ are appear 2݊(݉ − ݅ + 1) 

times where 2 ≤ ݅ ≤ ݉. Therefore the Hosoya polynomial of ଵܶ = TUVC6[݉, ݊] is 

equals to: 

ܹ( ଵܶ, (ݔ =
1
2݊ ቎

ቌ݉෍ݔௗభ,ೕ
ೡ(భ,భ)

௡

௝ୀଵ

ቍ + ቌ෍2(݉ − ݅ + 1)(෍ݔௗ೔,ೕ
ೡ(భ,భ)

௡

௝ୀଵ

)
௠

௜ୀଶ

ቍ቏. 

Now, consider the distance matrix ܦଶ of an armchair polyhex carbon nanotorus 

ଵܵ. By apply a similar algorithm as above, we obtain ܦ௩(௜,௝) = ೘ߙ௝ߚ
మ
 ௩(ଵ,ଵ). By thisܦ

equation the Wiener polynomial of ଵܵ is as follows: 

ܹ( ଵܵ, (ݔ =
݉݊
2 ൮෍ݔௗభ,ೕ

ೡ(భ,భ)
௡

௝ୀଵ

+ 2൮෍෍ݔௗ೔,ೕ
ೡ(భ,భ)

௡

௝ୀଵ

௠
ଶ

௜ୀଶ

൲+෍ݔ
ௗ೘
మ శభ,ೕ
ೡ(భ,భ)௡

௝ୀଵ

൲ 

2.2 Zig-zag polyhex carbon nanotube 
 

Let ଶܶ = TUVC଺[݉, ݊] be the zig−zag polyhex carbon nanotube, where ݉ is the 

number of rows and ݊ is the number of zig-zags and it is an even integer, Figure 3.  

Choose two base vertices (1,1)ݒ and (1,1)ݑ from the 2–dimensional lattice of 

ଶܶ. Let ܦ௨(ଵ,ଵ) = ቂ݀௜,௝
௨(ଵ,ଵ)ቃ and ܦ௩(ଵ,ଵ) = ቂ݀௜,௝

௩(ଵ,ଵ)ቃ are distance matrices between vertex 

 and all vertices of ଶܶ, respectively. Define three matrices as (1,1)ݒ and vertex (1,1)ݑ

follows: 

ܣ
௠×(೙మାଵ)
௨(ଵ,ଵ) = ൣܽ௜,௝൧:  

ܽଵ,ଵ = 0, ܽଵ,ଶ = 1, ܽ௜,ଵ = ൜
ܽ௜ିଵ,ଵ + 1, 2|݅
ܽ௜,ଶ + 1,				2 ∤ ݅, ܽ௜,ଶ = ൜

ܽ௜ିଵ,ଵ + 1,			2|݅
ܽ௜ିଵ,ଶ + 1, 2 ∤ ݅ and ܽ௜,௝ = ൜

ܽ௜,ଵ, 2 ∤ ݆
ܽ௜,ଶ,					2|݆

.  
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Figure 3. The 2–Dimensional Fragment of an Zig−Zag Polyhex Carbon Nanotube. 

ܣ
௠×(೙మାଵ)
௩(ଵ,ଵ) = ൣܿ௜,௝൧:  

ܿଵ,ଵ = 0, ܿଵ,ଶ = 1, ܿ௜,ଵ = ൜
ܿ௜,ଵ + 1,							2|݅
ܿ௜ିଵ,ଵ + 1, 2 ∤ ݅, ܿ௜,ଶ = ൜

ܿ௜ିଵ,ଶ + 1, 2|݅
ܿ௜,ଵ + 1, 2 ∤ ݅  and ܿ௜,௝ = ൜

ܿ௜,ଵ, 2 ∤ ݆
ܿ௜,ଶ,					2|݆

. 

௠×ቀ೙మାଵቁܤ
= ൣ ௜ܾ,௝൧: ௜ܾ,ଵ = ݅ − 1 where 1 ≤ ݅ ≤ ݉ and ௜ܾ,௝ = ௜ܾ,௝ିଵ + 1 for other entries.  

From these matrices, one can easily compute matrices Du(1,1) and Dv(1,1) as follows: 

,/
/),max(

),(
)(

),(












 12
121

11
2

11
nj   d

njba
d u

jni

ijiju
ij

 
./

/),max(
),(

)(

),(












 12
121

11
2

11
nj   d

njca
d v

jni

ijijv
ij  

Now, set mi
u
iuD  1

11
11 ][ ),(
),(  and mi

v
ivD  1

11
11 ][ ),(

),( , such that Δi denotes 

the ith row of the matrix. We also assume that the first row of Du(1,1) and Dv(1,1) are as 

follows: 

],,,,,,,[ ),(
),(

),(
)/,(

),(
)/,(

),(
),(

),(
),(

),(
),(

11
11

11
21

11
21

11
21

11
21

11
11

u
v

u
nu

u
nv

u
u

u
v

u
u dddddd   
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].,,,,,[ ),(
)/,(

),(
)/,(

),(
),(

),(
),(

),(
),(

),(
),(

11
21

11
21

11
21

11
21

11
11

11
11

v
nu

v
nv

v
u

v
v

v
u

v
v dddddd   

Suppose ),( 1iuD  and ),( 1ivD  are distance matrices associated to the ith row of ଶܶ. 

Then, 

.,

),(

),(

),(

),(

),(

),(

),(

),(

),(

),(








































































11

1

11
1

11
2

11

1

11
1

11
1

11
2

11

1

v
im

v

u

u
i

iv

u
im

u

v

v
i

iu DD



 

Notice that, two matrices Du(i,j) and Dv(i,j) are obtained by replacement of the 

columns of Du(i,1) and Dv(i,1), respectively. Now, by applying above discussion we can 

enumerate the entries of the distance matrix ܦ( ଶܶ) and To compute the Hosoya 

polynomial, it is enough to count the equal entries of ܦ( ଶܶ). The entries of the ith row 

of these matrices (1 < i ≤ m) are appear 2n(m − i+1) times, and the entries of the first 

row are appear nm times. We achieve two polynomials for vertices u and v, as follows: 

 























































  

 

m

i

n

j

d
n

j

d
u

u
ji

u
ji ximxmnxTW

2 11

1111

12
2
1 ),(

,
),(

, )(,  

 























































  

 

m

i

n

j

d
n

j

d
v

v
ji

v
ji ximxmnxTW

2 11

1111

12
2
1 ),(

,
),(

, )(,  

Therefore the Hosoya polynomial of ଶܶ is as follows: 

   xTWxTWxTW vu ,,),(   

 



SHABANI                                                                                                                                                             JMNS 
 

38 
 

Jo
ur

na
l o

f 
M

at
he

m
at

ic
al

 N
an

oS
ci

en
ce

 

2.3 TUC4C8(S) carbon nanotube and nanotori 
 
Suppose ଷܶ is 2–dimensional lattice of TUC4C8(S)[m,n], where m is the number 

of rows and n is the number of columns. Choose eight base vertices xk(1,1), xk{ a1, b1, 

c1, d1, a2, b2, c2, d2}, Figure 4. Consider partition P = {A1, A2, B1, B2, C1, C2, D1, D2} of V(T3) 

in which if XjP then Xj = {xk(i,t): 1 ≤ i ≤ m,1 ≤ t ≤ n, k = j}. The matrix j

k

X
xD ),( 11  is a 

matrix in which its entries are the distance from ݔ௞(1,1) to all of vertices in ௜ܺ . To 

compute distance matrix of T3, we must find all of these matrices. The first row of 

D(T3) is the all entries of eight matrices of vertex a1(1,1), and other rows are obtained 

similarly. By using the symmetry of T3, we don't need to investigate the vertices with 

subscript 2. Hence the computation of sixty four matrices presented above, decreases 

to thirty two matrices.  

 
Figure 4. The 2–Dimensional Fragment of an TUC4C8(S) Carbon Nanotube. 

Let mii
x
j

X
x

kj

k
XD  111 ])[(),(  where i

x
j

kX )( is ith row of the matrix and k{1,2}. 

We can obtain other matrices for the tth row (2 ≤ t ≤ m) and first column of T3. Now 

we enumerate the entries of distance matrix D(T3). For this, define i, (1 ≤ i ≤ m), by 
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












1211
121

imii
mii

i ......
......

 , then we can see that the times of repeating s-

th row matrix jX
xD ),( 111

 is the number of columns in T3 multiplied by the number of 

members of the set {j(j+s−1), j(j−s+1) : j, j+s−1, j−s+1≤ m }. Therefore, for this matrix 

we obtain the following polynomial: 

 























































  

 

m

i

n

j

dn

j

dX
x

jijj

k
ximxmnxTW

2 11
311 122

2
1 1 ,, )(,),(  

So the Wiener polynomial of T3 is  
1

1 3113
xX

X
x

j

j xTWxTW
,

),( ,),( . 

Now consider the molecular graph of a S3 = TUC4C8(S)[m,n] nanotorus, where 

m is the number of rows and n is the number of columns. As similar way, choose eight 

base vertices xk(1,1), xk{ a1, b1, c1, d1, a2, b2, c2, d2}, Figure 5. 

 
Figure 4. The 2–Dimensional Fragment of an TUC4C8(S) Carbon Nanotori. 
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Also, partition V(S3) into eight parts P = {A1, A2, B1, B2, C1, C2, D1, D2} where XjP 

and Xj = {xk(i,t) | 1 ≤ i ≤ m, 1 ≤ t ≤ n, k = j}. To compute D(S3), it is enough to calculate 

matrices j

k

X
xD ),( 11 . By a similar argument as above, we obtain the following polynomial 

as   
ji

dX
x

jij

k
xnmxSW

,
),(

,,
2
1

311 for matrix j

k

X
xD ),( 11 . Therefore the Hosoya 

polynomial of S3 is equals to  
1

1 3113 2
xX

X
x

j

j xSWxSW
,

),( ,),( . 

2.4 TUC4C8(R) nanotube and nanotori 
 

Let T4 be 2–dimensional lattice of TUC4C8(R)[m,n], where m is the number of rows and 

n is the number of columns of it. Similar as last section, choose four base vertices 

x(1,1), x{a, b ,c ,d} from the molecular graph of T4, Figures 5.  

 
Figure 5. The 2–Dimensional Fragment of TUC4C8(R) Carbon Nanotube. 

 

Partition the vertex set of T4 into four sets A, B, C, and D such that all vertices 

with label a are in the set A, and so on. Define matrix ),(
),(
jia

aD 11  as the matrix for the base 
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vertex a(1,1) in which the entries of this matrix are distances between a(1,1) and a(i,j) 

 A. For computing D(T1), we first define the following 16 matrices: 

.,,,,,,,

,,,,,,,,

),(),(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
D
d

C
d

B
d

A
d

D
c

C
c

B
c

A
c

D
b

C
b

B
b

A
b

D
a

C
a

B
a

A
a

DDDDDDDD

DDDDDDDD

1111111111111111

1111111111111111
 

By using the symmetry of T4, it is enough to compute eight of these matrices. 

Remark that four matrices ),(
),(
jia

aD 11 , ),(
),(
jib

bD 11 , ),(
),(
jic

cD 11  and ),(
),(
jid

dD 11  are equal. Consider the 

permutation µ = 










2311

1321
...
...

nn
nn

. One can easily see that the matrices 

),(
),(
jib

aD 11  and ),(
),(
jib

cD 11  are obtained from ),(
),(
jid

aD 11  and ),(
),(
jid

cD 11 . By symmetry of T4, it is 

possible to compute the matrix evaluated at the base vertex d from the same matrix 

for the vertex b. On the other hand, the matrices ),(
),(
jid

bD 11 , ),(
),(

jic
dD 11  and ),(

),(
jia

dD 11  is computed 

from ),(
),(
jib

dD 11 , ),(
),(
jic

bD 11  and ),(
),(
jia

bD 11  by trace of µ.  

We now count the repeated entries of these matrices to find the following 

equation:  

  ,)(, ,,),(
),( 























































  

 

m

i

n

j

d
n

j

djia
a

jij ximxmnxTW
2 11

411 12
2
1 1  

where  ji
jia

a dD ,
),(
),( 11 .  

Other polynomials are similar and so the Hosoya polynomial of this nanotube is 

computed as follows: 
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   
   
   
 

a(i, j) d(i, j)
4 8 a(1,1) 4 8 a(1,1) 4 8

c(i, j) a (i, j)
a (1,1) 4 8 c(1,1) 4 8

d(i, j) a (i, j)
c(1,1) 4 8 b(1,1) 4 8

c(i, j)
b(1,1) 4 8 b(1

W(TUC C (R), x) 4W TUC C (R), x 2W TUC C (R), x

W TUC C (R), x W TUC C (R), x

2W TUC C (R), x 2W TUC C (R), x

2W TUC C (R), x 2W

 

 

 

   d(i, j)
,1) 4 8TUC C (R), x .

  

Now consider the molecular graph of a S4 = TUC4C8(R) nanotorus. For this 

molecular graph, choose four base vertices a(i,j), b(i,j), c(i,j) and d(i,j), Figure 6.  

 
Figure 6. The 2–Dimensional Fragment of TUC4C8(R) Carbon Nanotori. 

 

 By apply similar argument and consider partition A, B, C and D for 

vertices, we found the polynomial ௔ܹ
஺( ସܶ, (ݔ =

ଵ
ଶ
݊݉∑ ∑ ௗ೔,ೕ௠ݔ

௜ୀଵ
௡
௝ୀଵ , where A

aD ),( 11  = 

[di,j]. Other polynomials are similar and so the Hosoya polynomial of this nanotorus is 

computed as follows: 

,ࢀ)ࡴ (ࢗ 			= ૝ࢇࡴ
,ࢀ)࡭ (ࢗ + ૛ࢇࡴ

,ࢀ)ࡰ (ࢗ + ࢇࡴ
,ࢀ)࡯ (ࢗ + ࢉࡴ	

,ࢀ)࡭ (ࢗ + ૛ࢉࡴ
,ࢀ)ࡰ  (ࢗ

																		+	૛࢈ࡴ
,ࢀ)࡭ (ࢗ + ૛࢈ࡴ

,ࢀ)࡯ (ࢗ + ૛࢈ࡴ
,ࢀ)ࡰ  .(ࢗ
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