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ABSTRACT. The eccentric distance sum is a graph invariant defined as G Gv V G
v D v

( )
( ) ( )

  , 

where G v( )  is the eccentricity of a vertex v  in G and GD v( ) is the sum of distances of all 
vertices in G  from v . In this paper, we compute the eccentric distance sum of Volkmann 
tree and then we obtain some results for vertex−transitive graphs 
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1. INTRODUCTION  
A graph is a collection of points and lines connecting a subset of them. The points 

and lines of a graph are also called vertices and edges of the graph, respectively. The 
vertex and edge sets of the graph G  are denoted by  V G and  E G , respectively.  

A molecular graph is a simple graph such that its vertices correspond to the atoms 
and the edges to the bonds. Note that hydrogen atoms are often omitted. Chemical 
graph theory is a branch of mathematical chemistry which has an important effect on 
the development of the chemical sciences. 

In this paper, in the next section we give necessary definitions and some 
preliminary results. Section 3 contains the main results, i.e., the explicit formulas for 
the eccentric distance sum of Volkmann tree. 
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2.  PRELIMINARY NOTES 

If  ,x y V G  then the distance  Gd x y, between x  and y  is defined as the length of 
any shortest path in G  connecting x  and y . For a vertex u  of  V G  its eccentricity

G u( )  is the largest distance between u  and any other vertex v  of G , 

G v V G Gu d u v( )( ) max ( , )  . The maximum and minimum eccentricity over all vertices of 
G  are called the diameter and radius of G  and denoted by  d G ,  r G  respectively, 
see [9]. The total eccentricity of the graph G , can be defined as   Gu V G

G u
( )

( )


  , 

see [2]. The eccentric distance sum  d G  of a graph G  is defined as [7]: 

  
d

G Gu V G
G u D u

( )
( ) ( ),   

where GD u( )  denotes the sum of distances of all vertices in G  from v . The eccentric 
distance sum was a novel distance-based molecular structure descriptor which can be 
used to predict biological and physical properties. It has a vast potential in structure 
activity/property relationships, se for more details [1,3-8] Here our notation is 
standard and mainly taken from [9]. 

3. MAIN RESULTS 

The aim of this section is to compute  d G  of Volkmann tree. In continuing we 
compute this index for vertex−transitive graphs and non - vertex transitive graphs 
that their automorphism group has exactly two orbits. In the following examples, we 
present the eccentric distance sum of two well-known graphs. 
Example 1. Let nK  be the complete graph on n vertices. Then for every ( )nv V K , 

( ) 1D v n   and ( ) 1Gecc v  . This implies that ξ ( ) ( 1)d
nK n n  . 

Example 2. Let Cn denote the cycle of length n. Then if n is an odd number, 
D v n2( ) ( 1)/ 4  , else D v n2( ) / 4  and ( ) /2Gecc v n     for all vertices v. Hence,  

2

3

( 1) /2 / 4 2 |
( )

/2 / 4 2|
d

n

n n n n
C

n n n

        
   

. 

3.1 Vertex−transitive graphs 
 

An automorphism of the graph G V E( , )  is a bijection   on V which preserves the 
edge set E, i.e., if e=uv is an edge, then e u v( ) ( ) ( )    is an edge of E. Here the image 
of vertex u is denoted by u( ) . The set of all automorphisms of G under the 
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composition of mappings forms a group which is denoted by  Aut G . We say  Aut G  
acts transitively on V if for any vertices u and v in V there is  Aut G  such that 

u v( )  .  
Theorem 1. If  Aut G  acts transitively on V, then we have the following Theorem: 

 d G d G W G2 ( ) ( )  . 

Proof. Since this action is transitive, there exist an automorphism such as Aut G( )  
such that u v( )  and so 

G x V G G y V G G Gv d v x d u y u( ) ( )( ) max ( , ) max ( ( ), ( )) ( ).        

This completes the proof. 
 

3.2 Actions with two orbits 
 

In all over of this section by   and G( )  mean the automorphism graph  Aut G   
and  G d G r G( ) ( )   , respectively. Also the action of group   on the set   is 
denoted by ( | )  . Suppose   is a group which acts on the set  . If x , let 

x g x g( ) { . | }   . The set x( ) is called the orbit of x. The stabilizer of x is the subset 

x g g x x{ | . }.     In other words, when group   acts on set  , then 

n1 2 ...     where i ( i n1  ) are orbits of  . In the following lemma, we 
can deduce a generally formula for eccentric distance sum of G . 
 
Lemma 2. LetG V E( , )  be a graph and it's action V( | )  has orbits iV , i s1  . Then 

 
i

s
d

i i G
i v V

G V  u D v
1
| | ( ) ( ) 

 

  . 

Proof. It is well-known fact that the action of a group on its orbits is transitive. Hence 
by using Theorem 1, the proof is straightforward. 
 In continuing we consider graph G  such that it's action V( | )  has exactly two 
orbits. We denote this graph by TO-graphs. The vertex set V  under this action divides 
to subsets V1 and V2, where n V1 1 , n V2 2  and 1 2 | |n n n V   . Further, It is easy to see 
that degrees of vertices of iV  are the same and we denote them by  ik i 1, 2,  . Hence, 
by above notations, we have the following theorem. 
 
Theorem 3. Let G  be a TO-graph with m  edges, 1 2V  V  V   and  i iv V i 1, 2  . 
Then, 

 d G k n G D v W G G r G1 1 1( ) ( ) 2 ( )( ( ) ( )).      
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Proof. It is not difficult to see that 

1 21 1 2 2

1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2

( ) ( ) ( ) ( ) ( )

         = ( ) ( ) ( ) ( )= ( ) ( ) (2 ) ( ) ( ).

d
v V v VG D v v D v v

k n v D v k n v D v k n v D v m k n v D v
     

      

   

Since 1 1 1 2 2 2( ) ( ) 2 ( )k n D v k n D v W G   thus 

1 1 1 1 1 1 1 2 1 1 1( )= ( ) ( ) (2 ( ) ( )) ( )= ( ) ( ) 2 ( ). ( ).d G k n v D v W G k n D v v k n G D v W G r G        
 
3.3 Eccentric distance sum of Volkmann tree 
 
The Volkmann tree nV ,  is a tree on n  vertices and maximum vertex degree  defined 
as follows: 

Start with the root having   neighbors. Every vertex different from the root, 
which is not in one of the last two levels, has exactly 1 neighbors. In the last level, 
while not all vertices need to exist, the vertices that do exist fill the level consecutively. 
Thus, at most one vertex on the level second to last has its degree different from   
and 1, see Figure 1. 

 
Figure 1. The Volkmann tree nV , .  

 
Theorem 4. The eccentric distance sum of Volkmann tree is as follows 

 
k k

d m m
n

m m k

k
i

i

V A B C d d k m A B C d d m

              k id d

( 1)/2
1 1

,
1 ( 1)/2

1

1

( ) ( 1) ( 2) ( ) ( 1)

( 1) ,

  
 


    





         

 

 




 

where, 
m n

n i

n i
S m n m n d m n i d d

1 1
1

2 1
[( ) ( )( 1) ( 2 )( 2)( 1) ],

 


 

            

A m m d S2 1 ( 1)( 1) ,       
m

i m

i
B i d d m d

1
1

1
( 2 ( 2)( 1) ) 2 ( 1)






      

m
n m i

i
R n m i d d

2

0
( 2( 1)( 2)( 1)


 



      ,  

d

d-1d-1
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k
n m n

n m
C n m d n m d R

1
(( )( 1) ( )( 1) ).

 

        

Proof. The proof is straightforward. 
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