Computing fifth geometric-arithmetic index for nanostar dendrimers

Ante Graovac, Modjtaba Ghorbani• and Mohammad A. Hosseinzadeh
Institute R. Bošković, HR-10002 Zagreb, POB 180, Croatia, and Faculty of Science, University of Split Nikole Tesle 12, HR-21000, Split, Croatia
Department of Mathematics, Faculty of Science, Shahid Rajaee
Teacher Training University, Tehran, 16785 - 136, I. R. Iran;
Corresponding author: mghorbani@srttu.edu

Abstract. The geometric-arithmetic index is a topological index was defined as $G A(G)=\sum_{w e E} \frac{2 \sqrt{d_{u} \mathrm{~d}_{v}}}{\mathrm{~d}_{u}+\mathrm{d}_{v}}$, in which degree of vertex u denoted by $\mathrm{d}_{\sigma}(u)$. Now we define a new version of $G A$ index as $G A_{5}(G)=\sum_{e=w \in E(G)} \frac{2 \sqrt{\delta_{u} \delta_{v}}}{\delta_{u}+\delta_{v}}$, where $\delta_{u}=\sum_{u v \in E(G)} \mathrm{d}_{v}$. The goal of this paper is to further the study of the $G A_{5}$ index.

Keywords: GA index, GA_{5} index, Dendrimers.

1. Introduction

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena. This theory has an important effect on the development of the chemical sciences.

A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Note that hydrogen atoms are often omitted. By IUPAC terminology, a topological index is a numerical value associated with chemical

[^0]constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity.

A graph is a collection of points and lines connecting a subset of them. The points and lines of a graph also called vertices and edges of the graph, respectively. If e is an edge of G, connecting the vertices u and v, then we write $e=u v$ and say " u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices.

Let \sum be the class of finite graphs. A topological index is a function Top from \sum into real numbers with this property that $\operatorname{Top}(G)=\operatorname{Top}(H)$, if G and H are isomorphic. Obviously, the number of vertices and the number of edges are topological index. The Wiener [1] index is the first reported distance based topological index and is defined as half sum of the distances between all the pairs of vertices in a molecular graph. If $x, y \in V(G)$ then the distance $d_{G}(x, y)$ between x and y is defined as the length of any shortest path in G connecting x and y.

A class of geometric-arithmetic topological indices [2] may be defined as $G A_{\text {general }}=\sum_{u v \in E} \frac{2 \sqrt{Q_{u} Q_{v}}}{Q_{u}+Q_{v}}$, where Q_{u} is some quantity that in a unique manner can be associated with the vertex u of the graph G. The first member of this class was considered by Vukicevic and Furtula [3], by setting Q_{u} to be the

$$
G A(G)=\sum_{u v \in E} \frac{2 \sqrt{\mathrm{~d}_{G}(u) \mathrm{d}_{G}(v)}}{\mathrm{d}_{G}(u)+\mathrm{d}_{G}(v)},
$$

in which degree of vertex u denoted by $\mathrm{d}_{G}(u)$. The second member of this class was considered by Fath-Tabar et al. [4] by setting Q_{u} to be the number n_{u} of vertices of G lying closer to the vertex u than to the vertex v for the edge $u v$ of the graph G :

$$
G A_{2}(G)=\sum_{u v \in E} \frac{2 \sqrt{n_{u} n_{v}}}{n_{u}+n_{v}} .
$$

The third member of this class was considered by Bo Zhou et al[5] by setting Q_{u} to be the number m_{u} of edges of G lying closer to the vertex u than to the vertex v for the edge $u v$ of the graph G :

$$
G A_{3}(G)=\sum_{u v \in E} \frac{2 \sqrt{m_{u} m_{v}}}{m_{u}+m_{v}} .
$$

The fourth member of this class was considered by Ghorbani et al[6] by setting Q_{u} to be the number ε_{u} the eccentricity of vertex u :

$$
G A_{4}(G)=\sum_{u v \in E} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} .
$$

Here, we define the fourth member of this class as follows:

$$
G A_{5}(G)=\sum_{u v \in E} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)},
$$

in which $\delta_{G}(u)=\sum_{u v \in E(G)} \mathrm{d}_{G}(v)$.
The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajstić [7]. They are defined as:

$$
M_{1}(G)=\sum_{v \in V(G)}\left(\operatorname{deg}_{G}(v)\right)^{2} \text { and } M_{1}(G)=\sum_{u v \in E(G)} \operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v) .
$$

Now we define a new version of Zagreb indices as follows:

$$
M_{1}^{\prime}(G)=\sum_{u v \in E(G)} \delta_{G}(u)+\delta_{G}(v) \text { and } M_{2}^{\prime}(G)=\sum_{u v \in E(G)} \delta_{G}(u) \delta_{G}(v)
$$

Here our notations are standard and mainly taken from [8-13].

2. Main Results and Discussion

The goal of this section is the study of GA_{5} index. Furthermore we compute some bounds for this new topological index.

Example 1. Let K_{n} be the complete graph on n vertices. Then for every $v \in V\left(K_{n}\right)$ and $\operatorname{deg}_{G}(v)=n-1$ and so $\delta_{G}(v)=(n-1)^{2}$. This implies that $G A_{5}\left(K_{n}\right)=n(n-1) / 2$.
Example 2. Let C_{n} denote the cycle of length n. Then $d_{G}(v)=2$ and $\delta_{G}(v)=4$. Hence, $G A_{5}\left(C_{n}\right)=n$.
Example 3. Let P_{n} be a path of length n. Then one can see that

$$
G A_{5}\left(P_{n}\right)=\frac{4 \sqrt{6}}{5}+\frac{4 \sqrt{3}}{7}(n-3) .
$$

Example 4. Let S_{n} be a star graph with $n+1$ vertices. Then $G A_{5}\left(S_{n}\right)=n(n-1) / 2$.
Lemma 5. The first Zagreb index satisfies in the following equation:

$$
M_{1}(G)=\sum_{v \in V(G)} \delta_{G}(v) .
$$

Proof. By using definition one can see that:

$$
\sum_{v \in V(G)} \delta_{G}(u)=\sum_{u \in V(G)} \sum_{v \in N_{G}(u)} \operatorname{deg}_{G}(v)=\sum_{v \in V(G)}\left(\operatorname{deg}_{G}(v)\right)^{2}=M_{1}(G) .
$$

By using definition of GA_{5} index we can prove, $0 \leq \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)} \leq 1$. So, we can conclude two following theorems:

Theorem 6. Let G be a non empty connected graph on $n \geq 3$ vertices. Then

$$
G A_{5}(G) \leq \sqrt{M_{2}^{\prime}+2 M_{2}^{\prime 2}} .
$$

Proof. For every edge $e=u v \operatorname{in} \mathrm{E}(G), \delta_{G}(u)+\delta_{G}(v) \geq 2$ and so we have:

$$
\begin{aligned}
& \left(G A_{5}(G)\right)^{2} \leq \sum_{u v \in E(G)} \delta_{G}(u) \delta_{G}(v)+2 \sum_{u v \neq u^{\prime} v^{\prime}} \sqrt{\delta_{G}(u) \delta_{G}(v)} \sqrt{\delta_{G}\left(u^{\prime}\right) \delta_{G}\left(v^{\prime}\right)} \\
& \Rightarrow\left(G A_{5}(G)\right)^{2} \leq M_{2}^{\prime}+2 M_{2}^{\prime 2} \Rightarrow G A_{5}(G) \leq \sqrt{M_{2}^{\prime}+2 M_{2}^{\prime 2}}
\end{aligned}
$$

Theorem 7. Let T be a chemical tree with $\mathrm{n} \geq 2$ vertices. Then $G A_{5}(T) \leq 256(n-1)$.
Proof. For every vertex $u \in V(T), \operatorname{deg}(u) \leq 4$ and so, $\delta_{G}(u) \leq 4^{4}=256$. On the other hand, $\delta_{G}(u)+\delta_{G}(v) \geq 2$ and this completes the proof.

Theorem 8. Let Δ be the maximum degree of graph G. Then

$$
\frac{1}{\Delta} G A(G) \leq G A_{5}(G) \leq \Delta G A(G) .
$$

Proof. For every vertex u in $V(G)$ it is easy to see that $d u \leq \delta_{G}(u) \leq \Delta d u$.
An automorphism of the graph $G=(V, E)$ is a bijection σ on V which preserves the edge set E, i. e., if $e=u v$ is an edge, then $\sigma(e)=\sigma(u) \sigma(v)$ is an edge of E. Here the image of vertex u is denoted by $\sigma(u)$. The set of all automorphisms of G under the composition of mappings forms a group which is denoted by $\operatorname{Aut}(G)$. $\operatorname{Aut}(G)$ acts transitively on V if for any vertices u and v in V there is $\alpha \in \operatorname{Aut}(G)$ such that $\alpha(u)=v$. Similarly $G=(V, E)$ is called edge-transitive graph if for any two edges $e_{1}=u v$ and $e_{2}=x y$ in E there is an element $\beta \in \operatorname{Aut}(G)$ such that $\beta\left(e_{1}\right)=e_{2}$ where $\beta\left(e_{1}\right)=\beta(u) \beta(v)$. Let $G=$ (V, E) be a graph. If $\operatorname{Aut}(G)$ acts edge-transitively on V, then we have the following Lemma:
Lemma 9. $G A_{5}(G)=|E| \frac{\sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)}$, for every $e=u v \in E(G)$.
Example 10. Let S_{n} be the star graph with $n+1$ vertices. It is easy to see that S_{n} is edgetransitive. So we have:

$$
G A_{5}\left(S_{n}\right)=n \times 1=n .
$$

Lemma 11. Let $G=(V, E)$ be a graph. If $\operatorname{Aut}(G)$ on E has orbits $E_{i}, 1 \leq i \leq s$, where $e_{i}=u_{i} v_{i}$ is an edge of G. then:

$$
G A_{5}(G)=2 \sum_{i=1}^{s}\left|E_{i}\right| \frac{\sqrt{\delta_{G}\left(u_{i}\right) \delta_{G}\left(v_{i}\right)}}{\delta_{G}\left(u_{i}\right)+\delta_{G}\left(v_{i}\right)} .
$$

In this section we compute the truncated GA_{5} index of the chain graphs. Then we use this method to compute the GA_{5} index for an infinite class of nanostar dendrimers.

3. Applications

In this section we compute GA_{5} index of a class of nanostar dendrimer. To do this at first we introduce the concept of truncated GA_{5} index. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a subset
of $\mathrm{V}(\mathrm{G})$. We now define a new version of the GA_{5} index and name it the truncated GA_{5} index $G A_{5}^{(U)}$ as

$$
G A_{5}^{\left(u_{1}, u_{2}, \ldots, u_{k}\right)}(G)=\sum_{\substack{u v \in E(G) \\ u, v \in \bigcup_{i=1}^{k} N_{G}\left[u_{i}\right]}} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)}
$$

i. e.,

$$
G A_{5}^{(U)}(G)=\sum_{\substack{u v \in E(G) \\ u, v \in \bigcup_{i=1} \prod_{G}\left[u_{i}\right]}} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)} .
$$

Where $N_{G}[u]=N_{G}(u) \cup\{u\}$.
It should be noticed that in the case $U=\emptyset$ then, $G A_{5}^{(U)}(G)=G A_{5}(G)$. Let $G_{i}(1 \leq i \leq n)$ be some graphs and $v_{i} \in V\left(G_{i}\right)$. A chain graph denoted by $G=G\left(G_{1}, \ldots, G_{n}, v_{1}, \ldots, v_{n}\right)$ is obtained from the union of the graphs $G_{i}(1 \leq i \leq n)$ by adding the edges $v_{i} v_{i+1}(1 \leq i \leq n$ 1), see Fig. 1. Then $|V(G)|=\sum_{i=1}^{n}\left|V\left(G_{i}\right)\right|$ and $|E(G)|=(n-1)+\sum_{i=1}^{n}\left|E\left(G_{i}\right)\right|$.

Fig. 1. The chain graph $G=G\left(G_{1}, \ldots, G_{n}, v_{1}, \ldots, v_{n}\right)$.
It is worth noting that the above specified class of chain graphs embraces, as special cases, all trees (among which are the molecular graphs of alkanes) and all unicyclic graphs (among which are the molecular graphs of monocycloalkanes). Also the molecular graphs of many polymers and dendrimers are chain graphs.

Lemma 12. Suppose that $G=G\left(G_{1}, G_{2}, \ldots, G_{n}, v_{1}, v_{2}, \ldots, v_{n}\right)$ is a chain graph. Then:
(i) $G=G\left(G_{1}, G_{2}, \ldots, G_{n}, v_{1}, v_{2}, \ldots, v_{n}\right)$ is connected if and only if $G_{i}(1 \leq i \leq n)$ are connected.

$$
\text { (ii) } \mathrm{d}_{G}(a)=\left\{\begin{array}{ll}
\mathrm{d}_{G_{i}}(\mathrm{a}) & a \in V\left(G_{i}\right) \text { and } a \neq v_{i} \\
\mathrm{~d}_{G_{i}}(a)+1 & a=v_{i}, i=1, n \\
\mathrm{~d}_{G_{i}}(a)+2 & a=v_{i}, 2 \leq i \leq n-1
\end{array} .\right.
$$

(iii) if $u \in V\left(G_{i}\right)$ and $v_{i} \notin N_{G_{i}}[u]$ then $\delta_{G}(u)=\delta_{G_{i}}(u)$.

Theorem 13. If $n \geq 2$ and $v_{1}, \ldots, v_{n} \neq u_{1}, \ldots, u_{k}$, then for $G=G\left(G_{1}, G_{2}, \ldots, G_{n}, v_{1}, v_{2}, \ldots, v_{n}\right)$ it holds:

$$
G A_{5}^{\left(u_{1}, \ldots u_{k}\right)}(G)=\sum_{i=1}^{n} G A_{5}^{\left(u_{1}, \ldots, u_{k}, v_{i}\right)}\left(G_{i}\right)+\sum_{i=1}^{n} \sum_{\substack{u \in N_{G_{i}}\left[v_{i}\right] \\ u, v \in \bigcup_{i=1} N_{G}\left[u_{i}\right]}}^{u v \in E\left(G_{i}\right)} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)}+\sum_{i=1}^{n-1} \frac{2 \sqrt{\delta_{G}\left(v_{i-1}\right) \delta_{G}\left(v_{i}\right)}}{\delta_{G}\left(v_{i-1}\right)+\delta_{G}\left(v_{i}\right)} .
$$

Proof. By using the definition of the truncated GA5 index one can see that

$$
\begin{aligned}
& G A_{5}^{\left(u, u_{2}, \ldots, u_{k}\right)}(G)=\sum_{\substack{u v \in(G) \\
u, v \in \bigcup_{i=1}^{k} N_{G}\left[u_{i}\right]}} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)}=\sum_{\substack{u v \in E(G) \\
u, v \in \bigcup_{i=1} N_{G}\left[v_{i}\right] \cup \bigcup_{j=1}^{k} N_{G}\left[u_{j}\right]}} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)} \\
& +\sum_{i=1}^{n} \sum_{\substack{\left.u v E G\left(G_{j}\right) \\
u \in N_{G}, v_{i}\right]}} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)}+\sum_{i=1}^{n-1} \frac{2 \sqrt{\delta_{G}\left(v_{i-1}\right) \delta_{G}\left(v_{i}\right)}}{\delta_{G}\left(v_{i-1}\right)+\delta_{G}\left(v_{i}\right)} \\
& u, v \not \bigcup_{i=1}^{k} N_{G}\left[u_{i}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{n-1} \frac{2 \sqrt{\delta_{G}\left(v_{i-1}\right) \delta_{G}\left(v_{i}\right)}}{\delta_{G}\left(v_{i-1}\right)+\delta_{G}\left(v_{i}\right)}=\sum_{i=1}^{n} G A_{5}^{\left(u_{1}, \ldots, u_{k}, v_{i}\right)}\left(G_{i}\right)+\sum_{\substack{\left.i=1 \\
i v \in \in \in\left(G G_{G}\right) \\
u \in V_{G}, v_{i}\right] \\
u, v \in \bigcup_{i=1} \bigcup_{G}\left[u_{i}\right]}}^{n} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)} \\
& +\sum_{i=1}^{n-1} \frac{2 \sqrt{\delta_{G}\left(v_{i-1}\right) \delta_{G}\left(v_{i}\right)}}{\delta_{G}\left(v_{i-1}\right)+\delta_{G}\left(v_{i}\right)} .
\end{aligned}
$$

Corollary 14. The truncated GA_{5} index of the chain graph $G=G\left(G_{1}, G_{2}, v_{1}, v_{2}\right)$ $\left(v_{1}, v_{2} \neq u_{1}, \ldots, u_{k}\right)$ is:

$$
G A_{5}^{\left(u_{1}, \ldots, u_{k}\right)}(G)=\sum_{i=1}^{2} G A_{5}^{\left(u_{1}, \ldots, u_{k}, v_{i}\right)}\left(G_{i}\right)+\sum_{\substack{i=1 \\ u_{u}}}^{2} \sum_{\substack{\left.u \in N_{G}\left(G G_{G}\right) \\ u \in v_{i}\right] \\ u, v \in \bigcup_{i=1} N_{G}\left[u_{i}\right]}} \frac{2 \sqrt{\delta_{G}(u) \delta_{G}(v)}}{\delta_{G}(u)+\delta_{G}(v)}+\frac{2 \sqrt{\delta_{G}\left(v_{1}\right) \delta_{G}\left(v_{2}\right)}}{\delta_{G}\left(v_{1}\right)+\delta_{G}\left(v_{2}\right)} .
$$

We use from this corollary in the next section.
Example 15. Consider the graph G_{1} shown in Fig. 2. It is easy to see that

$$
G A_{5}\left(G_{1}\right)=\sqrt{35}+\frac{9 \sqrt{7}}{8}+\frac{8 \sqrt{5}}{3}+6,
$$

$$
G A_{5}^{\left(\nu_{1}\right)}\left(G_{1}\right)=G A_{5}^{\left(\nu_{2}\right)}\left(G_{1}\right)=G A_{5}^{\left(V_{3}\right)}\left(G_{1}\right)=G A_{5}^{\left(\nu_{1}\right)}\left(G_{1}\right)=\sqrt{35}+\frac{9 \sqrt{7}}{8}+\frac{16 \sqrt{5}}{9}+4
$$

and so,

$$
G A_{5}^{(V, v)}\left(G_{1}\right)=G A_{5}^{\left(v_{i}, v_{j}\right)}\left(G_{1}\right)=\sqrt{35}+\frac{9 \sqrt{7}}{8}+\frac{8 \sqrt{5}}{9}+2,
$$

for $1 \leq i, j \leq 3, i \neq j$.

Fig. 2 The graph of nanostar G_{n} for $n=1$.
Consider now the chain graph $G_{n}=G\left(G_{n-1}, H_{1}, v_{1}, u_{1}\right)$, shown in Fig. 2 (for $n=1$) and Fig. 3, respectively. It is easy to see that $H_{i} \cong G_{1}(1 \leq i \leq n-1)$ and

$$
\begin{gathered}
G_{n}=G\left(G_{n-1}, H_{1}, v_{1}, u_{1}\right) \\
G_{n-1}=G\left(G_{n-2}, H_{2}, v_{2}, u_{2}\right) \\
\vdots \\
G_{n-i}=G\left(G_{n-i-1}, H_{i+1}, v_{i+1}, u_{i+1}\right) \\
\vdots \\
G_{2}=G\left(G_{1}, H_{n-1}, v_{n-1}, u_{n-1}\right) .
\end{gathered}
$$

Then by using corollary 3 , we have the following relations:

$$
\begin{gathered}
G A_{5}\left(G_{n}\right)=G A_{5}^{\left(v_{1}\right)}\left(G_{n-1}\right)+G A_{5}^{\left(u_{1}\right)}\left(H_{1}\right)+\frac{2 \sqrt{35}}{3}+5 \\
G A_{5}^{\left(v_{1}\right)}\left(G_{n-1}\right)=G A_{5}^{\left(v_{2}\right)}\left(G_{n-2}\right)+G A_{5}^{\left(v_{1}, u_{2}\right)}\left(H_{2}\right)+\frac{2 \sqrt{35}}{3}+5 \\
\vdots \\
G A_{5}^{\left(v_{1}\right)}\left(G_{n-i}\right)=G A_{5}^{\left(v_{i+1}\right)}\left(G_{n-i-1}\right)+G A_{5}^{\left(v_{j}, u_{i+1}\right)}\left(H_{i+1}\right)+\frac{2 \sqrt{35}}{3}+5 \\
\vdots \\
G A_{5}^{\left(v_{n-2}\right)}\left(G_{2}\right)=G A_{5}^{\left(v_{n-1}\right)}\left(G_{1}\right)+G A_{5}^{\left(v_{n-2}, u_{n-1}\right)}\left(H_{n-1}\right)+\frac{2 \sqrt{35}}{3}+5 .
\end{gathered}
$$

Summation of these relations yields

A. Graovac, M. Ghorbani \& M. A. Hosseinzadeh

$$
G A_{5}\left(G_{n}\right)=G A_{5}^{\left(v_{n-1}\right)}\left(G_{1}\right)+G A_{5}^{\left(u_{1}\right)}\left(H_{1}\right)+\sum_{i=2}^{n-1} G A_{5}^{\left(v_{i-1}, u_{i}\right)}\left(H_{i}\right)+(n-1)\left(\frac{2 \sqrt{35}}{3}+5\right),
$$

and so by using Example 1, it is easy to obtain

$$
\begin{aligned}
G A_{5}\left(G_{n}\right) & =2 G A_{5}^{\left(v_{1}\right)}\left(G_{1}\right)+(n-2) G A_{5}^{\left(v_{1}, v_{2}\right)}\left(G_{1}\right)+(n-1)\left(\frac{2 \sqrt{35}}{3}+5\right) \\
& =\left(\frac{5 \sqrt{35}}{3}+\frac{9 \sqrt{7}}{8}+\frac{8 \sqrt{5}}{9}+7\right) n-\frac{2 \sqrt{35}}{3}+\frac{16 \sqrt{5}}{9}-1 .
\end{aligned}
$$

In other words we arrived at the following:
Theorem 16. Consider the chain graph $G_{n}=G\left(G_{n-1}, H_{1}, v_{1}, u_{1}\right)(n \geq 2)$, shown in Fig. 3. Then,

$$
G A_{5}\left(G_{n}\right)=\left(\frac{5 \sqrt{35}}{3}+\frac{9 \sqrt{7}}{8}+\frac{8 \sqrt{5}}{9}+7\right) n-\frac{2 \sqrt{35}}{3}+\frac{16 \sqrt{5}}{9}-1 .
$$

Corollary 17. Consider the nanostar dendrimer D, shown in Fig. 4. Then,

$$
G A_{5}(D)=\left(\frac{5 \sqrt{35}}{3}+\frac{9 \sqrt{7}}{8}+\frac{8 \sqrt{5}}{9}+7\right) n-\frac{2 \sqrt{35}}{3}+\frac{16 \sqrt{5}}{9}-1 .
$$

where n is the number of repetition of the fragment G_{1}.

Fig. 3. The chain graph G_{n} and the labeling of its vertices.

Fig. 4: The graph of the nanostar dendrimer D.

References

1. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17-20.
2. B. Furtula, A. Graovac and D. Vukičević, Atom-bond connectivity index of trees, Disc. Appl. Math., 157 (2009), 2828-2835.
3. D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369-1376.
4. GH. Fath-Tabar, B. Furtula and I. Gutman, A new geometric--arithmetic index, J. Math. Chem., 47 (2010), 477 - 486.
5. B. Zhou, I. Gutman, B. Furtula and Z. Du, On two types of geometric-arithmetic index, Chem. Phys. Lett., 482 (2009), 153-155.
6. M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index, Optoelectron. Adv. Mater. - Rapid Comm., 4(12) (2010), 2212-2215.
7. N. Trinajstić and I. Gutman, Mathematical Chemistry, Croat. Chem. Acta, 75 (2002), 329-356.
8. A. R. Ashrafi, M. Ghorbani and M. Jalali, Computing Sadhana polynomial of V phenylenic nanotubes and nanotori, Indian J. Chem., 47 (2008), 535-537.
9. A. R. Ashrafi and M. Ghorbani, PI and Omega polynomials of IPR fullerenes, Fullerenes, Nanotubes and Carbon Nanostructures, 18(3) (2010), 198-206.
10. A. R. Ashrafi, M. Ghorbani and M. Jalali, Study of IPR fullerenes by counting polynomials, Journal of Theoretical and Computational Chemistry, 8(3) (2009), 451-457.
11. A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, Journal of Computational and Applied Mathematics, 235(16) (2011), 4561-4566.
12. The GAP Team: GAP, Groups, Algorithms and Programming, RWTH, Aachen, 1995.
13. A. R. Ashra i and M. Ghorbani, Eccentric Connectivity Index of Fullerenes, 2008, In: I. Gutman, B. Furtula, Novel Molecular Structure Descriptors - Theory and Applications II, pp. 183-192.

[^0]: -Author to whom correspondence should be addressed.(e-mail:mghorbani@srttu.edu)

