Journal of Discrete Mathematics and Its Applications 10 (4) (2025) 333-358

Journal of Discrete Mathematics and Its Applications

o o 9 9 Shahid Rajaee Teacher
Available Online at: http://jdma.sru.ac.ir Training University

Research Paper
Velvetflow: An engineering pipeline for robust multi-density
clustering

Hossein Eyvazif Mohammad Badzohreh, Seyed Ali Shahrokhi

Department of Computer Science, University of Tarbiat Modares, Tehran, I. R. Iran

Academic Editor: Mohammad Javad Nadjafi-Arani

Abstract. Problem. Real-world datasets seldom respect a single density scale: tight blobs, elon-
gated ribbons, and isolated points often coexist. Classical algorithms such as DBSCAN or k-means
require domain-specific parameter tuning and provide only ad-hoc support for anomaly detection.

Solution. We introduce VelvetFlow, an engineering pipeline that turns a set of well-understood build-
ing blocks into a cohesive, end-to-end workflow for multi-density clustering and principled outlier
detection. The pipeline is composed of three reusable stages: (i) Contextual-density splitting assigns
every point to a high- or low-density partition using a single neighbourhood size k. (ii) Density-aware
clustering applies a Jaccard-guided FusedNeighbor+DBSCAN routine to the sparse partition and HDB-
SCAN to the dense partition-without introducing new hyper-parameters. (iii) Scaled-MST verification
re-examines the complete k-NN graph, flags weakly connected components, and validates them with
a k-NN gate; this step recovers small remote clusters while filtering genuine anomalies.

Results. Across four benchmark datasets with contrasting density profiles, VelvetFlow consis-

tently attains state-of-the-art clustering scores while producing an explicit, high-precision outlier list.
(Detailed metrics in Sec.[5])

Keywords. multi-density clustering, outlier detection, HDBSCAN, DBSCAN, MST, fused neighbor.
Mathematics Subject Classification (2020): 68710, 68U20, 62H30, 62]12, 68W40.

*Corresponding author (Email address:eyvazi_hoseyn@modares.ac.ir).
Received 10 May 2025; Revised 06 July 2025; Accepted 09 August 2025
First Publish Date: 01 December 2025

333 ©Shahid Rajaee Teacher Training University

http://jdma.sru.ac.ir
mailto: eyvazi\protect _hoseyn@modares.ac.ir

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)
1 Introduction

Clustering is a fundamental task in data science, aiming to partition datasets into groups
of closely related points. Traditional clustering methods (e.g., k-means, DBSCAN) often make
global assumptions about data distributions, which can lead to inaccuracies when real-world
datasets display heterogeneous densities, complex shapes, or significant noise. In particular,
clustering in the presence of multiple densities -where some portions of the dataset are ex-
tremely dense and others are sparse or isolated- poses challenges for most single-pass algo-
rithms.

Furthermore, outlier detection plays a decisive role in many applications, requiring ro-
bust identification of anomalous points without compromising the internal structure of valid
clusters. Inconsistent densities and complex local relationships can cause misclassification of
anomalies by one-size-fits-all parameters. As data grow increasingly varied, there is a need
for a novel strategy that can simultaneously address multi-density clustering and reliable
outlier detection.

VelvetFlow is proposed to fill this gap. Unlike single-phase strategies, VelvetFlow follows
a split-phase approach wherein it first assigns each data point to either a high-density or
low-density subset based on a carefully formulated contextual density metric. Points within
a dense region can then be processed via hierarchical methods to capture subtle structures,
while the more diffuse subset undergoes a specialized merging-based routine that unifies
neighboring micro-structures without risking over-compression. Crucially, after these dedi-
cated routines, a globally scaled minimum spanning tree (MST) is applied to pinpoint outlier
candidates. This scaled MST offers mathematically transparent edge comparisons, making
it simpler to isolate anomalies amidst varying cluster densities. A final verification uses a
k-NN neighbor distance analysis to confirm or dismiss flagged candidates.

Several motivating factors drive the development of VelvetFlow:

* Multi-density partitioning: Traditional clustering can fail when confronted with low-
density subregions adjacent to high-density cores. By separating subsets according to a
local density criterion, we ensure that sparse, potentially outlier-rich areas are tackled
in a manner appropriate to their inherent sparsity.

e Adaptive local merging: Our FusedNeighbor approach merges only sufficiently over-
lapping local neighborhoods. This preserves meaningful patterns in sparse regions
without employing overly aggressive parameter values that might be suitable only for
denser data.

* Scalable outlier detection: By constructing an MST on the entire dataset (rather than on
separate regions), we exploit global geometry to extract subgraphs that significantly de-
viate from typical connectivity patterns. Such deviations systematically indicate outlier
clusters or anomalies.

* Minimal intrusion verification. A lightweight verifier reuses the same neighbourhood

334

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

size k to scale MST edge lengths and applies a k-NN gate to flag outliers-introducing no
extra hyper-parameters.

Extensive benchmarks show that VelvetFloufoutperforms both classic single-density tech-
niques and the latest multi-density extensions in terms of clustering fidelity and outlier-
detection precision. The rest of the paper is organised as follows. Section [2] surveys prior
work in density-based clustering and outlier detection. Section 3/introduces the core ingre-
dients of VelvetFlow: contextual-density scoring, the FusedNeighbor merge, the scaled-MST
gate, and the k-NN verification step. Section [] describes the datasets, evaluation protocol,
and hyper-parameter grids, and Section 5| presents quantitative and qualitative results. Fi-
nally, Section |8/ concludes with limitations and directions for future research.

2 Related work

Since 2023, density-based clustering has focused on two persistent challenges: (i) recov-
ering clusters under strongly varying local densities and (ii) providing principled, global
anomaly detection. A recent survey of Density-Peak Clustering (DPC) reviews progress up
to 2023 [18]. Below we contrast VelvetFlow with recent DBSCAN derivatives, hierarchical
multi-density models, MST hybrids, and interactive variants.

2.1 Multi-density extensions of DBSCAN

MDBSCAN and its lineage. MDBSCAN introduces a relative-density core test and a split-
merge step to cope with heterogeneous densities [13]. Further work includes ADAPTIVE-
DBSCAN-GASA, which couples a genetic algorithm with simulated annealing to tune
(e, MinPts) [10]; AMD-DBSCAN, which retains multi-density robustness with just one user
control [17]; and RDBSCAN, which employs local relative density to sharpen neighbouring
cluster boundaries [20].

Despite these advances, all descendants rely on a single core/border rule and treat out-
liers implicitly. MDBSCAN’s split-merge step also inherits parameter-sensitivity.

Our departure. VelvetFlow avoids any global e by introducing a contextual-density z-score
computed inside each point’s k-NN shell. The same neighbourhood size k is reused for shape-
aware Jaccard fusion and for a scaled-MST verification gate, so no extra hyper-parameters are
added. This generalises MDBSCAN'’s local adaptation while improving shape preservation
and offering explicit outlier control.

2.2 Hierarchical and density-peak frameworks

DMDHC prunes a linkage tree to reveal multi-density structure [5]. DPC-MFP and
DPC-MDNN refine DPC with manifold or multi-feature distances, but still suffer domino-
style point assignment [16|19].

8 Source code: https://github.com/HosseinEyvazi/VelvetFlow

335

https://github.com/HosseinEyvazi/VelvetFlow

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

2.3 MST-based hybrid approaches

Scaled edge weighting on a minimum spanning tree (MST) sharpens cluster cuts and flags
outliers [9]. A concurrent study quantifies MST clustering’s competitiveness against expert
labels [11]. Our verification stage adopts these insights but reuses the same k chosen for
contextual density.

2.4 Semi-supervised and active variants

Active Semi-Supervised DBSCAN (ASS-DBSCAN) injects pairwise queries to guide clus-
tering on multi-density data [2]. Such methods assume an oracle and thus fall outside our
fully unsupervised scope.

2.5 Positioning of VelvetFlow
VelvetFlow combines (i) contextual-density normalisation, (ii) a density-aware split-partition

phase, and (iii) a scaled-MST verification gate that reuses the neighbourhood size k.

Comparison to MDBSCAN. In contrast to MDBSCAN’s single relative-density threshold
and post-hoc split-merge refinement, VelvetFlow

* computes a contextual-density score (a z-normalised statistic within each point’s k-NN
neighbourhood), eliminating (¢, MinPts);

* fuses micro-partitions via a shape-aware, threshold-free Jaccard weighting on the k-NN
graph; and

e verifies cluster integrity with a scaled-MST cut that reuses k, introducing no new knobs.

These steps extend MDBSCAN’s local adaptation while enhancing shape robustness and pro-
viding explicit, global anomaly detection.

3 Methodology

3.1 Overview of VelvetFlow

VelvetFlow is a comprehensive clustering framework designed to effectively handle datasets
with varying density distributions while simultaneously identifying outliers. The method-
ology is divided into distinct phases to address the challenges posed by multi-density data
structures:

1. Contextual density computation: Assessing the local density around each data point
to differentiate between high-density and low-density regions.

2. Data partitioning: Segregating the dataset into high-density and low-density subsets
based on computed density scores.

336

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

3. Clustering low-density subset: Applying the FusedNeighbor algorithm followed by DB-
SCAN to identify clusters within sparse regions.

4. Clustering high-density subset: Utilizing HDBSCAN to uncover clusters in densely
populated areas.

5. Minimum spanning tree (MST) based outlier detection: Constructing a scaled MST
to detect anomalous points across the entire dataset.

6. k-NN verification of outliers: Validating outlier candidates through neighborhood dis-
tance assessments to ensure robustness.

This section elaborates on the first two phases, detailing the mathematical foundations
that underpin the contextual density computation and the subsequent partitioning of data
based on these metrics.

3.2 Contextual density computation

To effectively differentiate between regions of varying densities within a dataset, Vel-
vetFlow employs a contextual density (CD) metric for each data point. This metric considers
both the proximity of a point to its neighbors and the inherent density of those neighbors,
providing a nuanced measure of local density.

3.2.1 Mathematical formulation

Given a dataset X = {x1,x5,...,xn} C R?, the contextual density CD; for a point x; is

defined as
k

B Z;‘zl max{dist(x;,x;), k_dist(x;)}’

CD; (1)

where

* d is the dimensionality of the feature space (number of attributes per point);

* kis the number of nearest neighbours considered;

e dist(x;,x;) is the Euclidean distance between x; and x;;

e k. dist(x;) is the distance from x; to its k-th nearest neighbour in X'.

Interpretation: A higher CD; value signifies that x; is located in a region with dense
clustering, as it is surrounded by neighbors that are both close in proximity and reside in

inherently dense areas themselves. Conversely, a lower CD; indicates that x; is in a sparser
region, possibly isolated or part of a less dense cluster.

337

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

3.2.2 Normalization

To ensure that the contextual density scores are comparable across different datasets and
scales, normalization is applied:

CD; — min(CD)
norm __ 1
D= max(CD) — min(CD)’ @

where min(CD) and max(CD) are the minimum and maximum contextual density values
across all points in X, respectively.

3.3 Data partitioning

Utilizing the computed contextual density scores, the dataset is bifurcated into high-
density and low-density subsets. This partitioning facilitates tailored clustering strategies
appropriate for each density regime.

3.3.1 Threshold determination

A threshold parameter ¢ € (0,1) is selected to delineate high-density regions from low-
density ones. Points with normalized contextual density exceeding this threshold are classi-
tied as high-density, while the rest are deemed low-density:

x;€ Xy if CD}™ >t 3)
x;€ Xy if CDM™ <t (4)

3.3.2 Mathematical justification

The selection of the threshold t is pivotal for effective partitioning. A mathematically
sound approach involves analyzing the distribution of CD;'*™ across X. Techniques such as
the elbow method or knee detection algorithms can be employed to identify an optimal t where
the rate of change in density scores significantly alters, indicating a natural separation be-
tween dense and sparse regions.

3.3.3 Partitioning algorithm

The partitioning process can be formalized as follows:
3.4 Clustering low-density subset

The low-density subset A7, often contains sparse clusters or isolated points that require a
specialized clustering approach to accurately identify meaningful groupings without being
overwhelmed by noise. VelvetFlow employs the FusedNeighbor algorithm in conjunction with
DBSCAN to address this challenge.

3.4.1 FusedNeighbor algorithm

FusedNeighbor is designed to merge points in X7 based on the similarity of their local
neighborhood structures. The algorithm operates as follows:

338

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

Algorithm 1 Data partitioning based on contextual density

Require: Dataset X, contextual density scores {CD;*"™}, threshold ¢
Ensure: High-density subset X, Low-density subset X7,

1. X H < @

2: X+ @

3: for each point x; € X’ do

4: if CDj*"™ > t then
5: Xy +— Xy U {xi}
6: else

7 X+ X U {xi}
8: end if

9: end for

10: return (Xpy, A7)

1. k-Nearest Neighbors identification: For each point x; € A7, identify its k-nearest neigh-
bors within A7 :
kNN(xZ) = {xh,sz, .. .,x]'k}.

2. Jaccard similarity computation: Compute the Jaccard similarity between the neighbor
sets of each pair of points:

B |kNN(xi) N kNN(x])\

~ |KNN(x;) UKNN(x;)|’

Jaccard(x;, x;)

3. Merging criterion: If Jaccard(x;,x;) > T, where 7 is a predefined similarity threshold,
merge the clusters containing x; and x;.

4. Iterative merging: Repeat the merging process iteratively until no further merges sat-
isfy the Jaccard similarity criterion.

3.4.2 Mathematical justification

The rationale behind using Jaccard similarity lies in its ability to quantify the overlap be-
tween the neighborhoods of two points, effectively capturing the structural similarity within
A1. By setting a threshold 7, we ensure that only points with sufficiently similar local envi-
ronments are merged, thereby preserving the integrity of distinct sparse clusters and mini-
mizing the amalgamation of unrelated points.

3.4.3 DBSCAN refinement

After the FusedNeighbor merging process, the resultant clusters in X7 may still contain
minor variations or outliers. To refine these clusters, DBSCAN is applied with parameters
tailored for low-density regions:

* £fused: A smaller neighborhood radius suitable for sparse data.

339

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

* minPtsg,eeq: A minimal number of points to form a core point in the context of low-
density clusters.

The application of DBSCAN post-FusedNeighbor ensures that any residual outliers are ef-
fectively identified and that clusters within A7 are cohesively formed without being domi-
nated by noise.

3.4.4 Algorithmic representation

Algorithm [summarises the full method. It computes contextual density, splits data into
homogeneous regions, merges them based on shared k-NNs, and verifies outliers using a
scaled MST. All steps use the same k and no extra hyper-parameters are introduced. The
total complexity is O(Nlog N + Nk).

Algorithm 2 FusedNeighbor clustering on low-density subset

Require: Low-density subset A7, number of neighbors k, Jaccard threshold
Ensure: Merged cluster indices Cp;, Remaining point indices Cr
1: // Each point is initially in its own cluster
forall x; € A} do
assign a new singleton cluster to x;
end for
// Jaccard-based merging over all pairs
for all pairs (x;,x;) withi < j do
[KNN(x;) NkNN(x))|
[KNN(x;) UKNN(x;)]|
if Jaccard(x;,x;) > T then
merge the clusters containing x; and x;
end if
: end for
// Remove empty clusters after merges
: prune all empty clusters from the cluster list
// Compute mean cluster size

1
1V<—m Z |c|

ceCpy

16: // Identify large clusters

17: Clarge — {C € Cu | |C| > “I/l}
18: Cp Clarge

19: Cgr + XL \ UCM

20: return (Cyy,Cr)

Jaccard(x;, x;) <

O O S S Y
S N

—_
Q1

3.4.5 Parameter selection

The effectiveness of FusedNeighbor is contingent upon the appropriate selection of the
number of neighbors k and the Jaccard similarity threshold . Empirical tuning based on
cross-validation or domain-specific insights is recommended to optimize cluster formation
and outlier exclusion.

340

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

Hyperparameters

* kneighbourhood size used (i) to compute contextual density and (ii) again in the k--NN
outlier-verification step.

e threshold on the z-normalised density that divides the data into low-density (X;) and
high-density (X}) subsets.

* g7, MinPts; DBSCAN parameters applied only to the low-density subset after the
FusedNeighbor pre-step.

* min_cluster_sizey, min_samplesy HDBSCAN parameters used only for clustering the
high-density subset.

e MST-based outlier detection - uses the scaled MST; no additional parameters.

* k reused the same k from the first item is reused for verifying candidate outliers, so no
new knob is introduced at this stage.

Early choices (k, t) influence which points flow into later stages, while the DBSCAN and
HDBSCAN settings control cluster detail within their respective density regimes. This list
shows exactly where each parameter enters the pipeline.

3.4.6 Mathematical guarantees

By leveraging Jaccard similarity for cluster merging, FusedNeighbor ensures that only points
with a substantial overlap in their local neighborhoods are combined. This approach pre-
serves the structural integrity of distinct clusters within A7 and mitigates the risk of merging
unrelated or sparsely connected points, thereby enhancing the overall robustness of the clus-
tering process.

Note: The subsequent part of the methodology will detail the clustering of the high-density
subset Xp, the construction and scaling of the Minimum Spanning Tree (MST) for outlier
detection, and the final consolidation of cluster labels.

3.5 Clustering high-density subset

Once the low-density subset A} has been processed, we focus on the high-density subset
Xrp, whose points x; satisfy CD*"™ > ¢. In this regime, a single global parameter is typically
less problematic because the points are already densely packed. However, a fixed e might still
merge distinct dense clusters or exclude fine boundary variations. To address this, VelvetFlow
adopts a hierarchical approach, leveraging HDBSCAN:

1. Core distances and mutual reachability: HDBSCAN first computes a core distance for
each point x; € Xy, given by

core dist(x;) = dist(x;, X))

341

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

where x ;) is the k-th nearest neighbor in the dense region (or MinPts if k is not used).
Mutual reachability between x; and x; thus becomes:

mreach(x;,x;) = max(core,dist(xi), core dist(x;), dist(x;, xj)).

2. Hierarchy construction: By constructing a minimum spanning tree of mutual reachabil-
ity distances, HDBSCAN generates a hierarchy (condensed tree) that gradually reveals
cluster splits at varying densities. Mathematically, smaller edges highlight robust con-
nections within dense regions, while larger edges correspond to sparser bridges.

3. Cluster extraction: A stability measure is used to decide which branches of the con-
densed tree represent stable clusters at different density levels. Points that do not fit
well into any stable branch become noise in the high-density context.

Advantages for high-density data: This hierarchical approach sidesteps the need for a singu-
lar ¢, thereby mitigating the risk of under- or over-clustering in X'y. It automatically adapts
to varied microstructures within dense regions, capturing subtle local densities that a global
parameter might obscure.

3.6 Global MST for outlier detection in multi-density context

After separately clustering X7 and Xy, we obtain two sets of cluster labels and merge
them into a unified label set (using unique integers). However, to identify outliers across
all densities, it is essential to capture abrupt transitions between clusters of varying density.
Hence, VelvetFlow constructs a scaled Minimum Spanning Tree (MST) over all points in X'-both
low- and high-density subsets. This global MST highlights sudden increases in distance that
likely occur at the interfaces of multi-density clusters or truly isolated anomalies.

3.6.1 Motivation for scaled MST

In multi-density scenarios, each dense cluster can exhibit its own characteristic distance
scale. Constructing a Minimum Spanning Tree (MST) over the entire dataset, therefore, pro-
vides a single global structure that encapsulates the connectivity across varying densities. By
scaling each edge in the MST, we emphasize relative rather than absolute distance jumps. This
scaling ensures that transitions from one density cluster to another manifest as unusually
large scaled edges. Consequently, this multi-density-aware approach effectively flags points
that do not integrate smoothly into any local cluster core, thereby identifying potential out-
liers irrespective of their local density.

3.6.2 MST construction and edge scaling

Let 7 be the MST constructed over all N points in X'. To construct 7, VelvetFlow employs
Prim’s algorithm, which begins with the smallest edge and progressively adds the next small-
est edge that connects a new node to the growing MST. Suppose the edges selected in the MST
are ordered as {eq,ey,...,en_1} with ascending weights w(e;) < w(ep) < -+ <w(ey_1). We
define the scaled MST T; by assigning each edge e; a scaled weight ws(e;) as follows:

342

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

w(e1), ifi=1,
ws(e;) = w(e;) (5)

, ifi>1.
w(ej_1)

For i > 1, the scaled weight w;(e;) compares the current edge’s weight w(e;) to the previ-
ous edge’s weight w(e;_1). Edges that represent unusually large jumps-indicative of bound-
aries between dense regions or connections to outliers-will thus have significantly higher
scaled weights ws(e;). This scaling process accentuates transitions in the MST that are char-
acteristic of multi-density structures, facilitating the identification of outlier candidates.

3.6.3 Cutting the MST and identifying candidates

To detect potential outliers, we process the scaled MST 7; by performing the following
steps:

1. Sorting scaled edges: Sort all edges of 7s in descending order based on their scaled
weights w;(e;).

2. Iterative cutting: Iterate through the sorted edges and perform iterative cuts by remov-
ing the edge with the highest scaled weight:

Cut(ﬁ/ ei) — (73/ 75)/
where 7; and 7 are the resulting connected components after removing edge e;.

3. Applying stopping criterion: Define a size threshold minnormal, representing the min-
imum number of points required for a subgraph to be considered “normal.” If removing
an edge e; results in a subgraph S such that |S| < minnormal, mark the entire subgraph
S as potentially outlier-dense. This is based on the rationale that extremely small con-
nected components typically form at regions with sharp density changes, indicating
isolated or boundary-like points.

In multi-density datasets, these small components often emerge at steep transitions be-
tween clusters of differing densities, thereby signaling anomalous or boundary points that
warrant further examination as outliers [8].

3.6.4 k-NN verification of outliers

The scaled MST exaggerates relative edge lengths so that unusually long links stand out,
enabling a single global cut to expose weakly connected objects. A side-effect, however, is
that a legitimate cluster that is both very small and far from the rest of the data may attach
through one overscaled edge (Fig.[I). Removing that edge places every point in the micro-
cluster into the outlier candidate set O.

To prevent such false positives, VelvetFlow performs an additional k-Nearest-Neighbor
(k-NN) validation:

343

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

Data Points and Outlier Candidates

¥

§

Figure 1. [llustrates a specific problem encountered when using the scaled minimum spanning tree
(MST) approach, particularly in outlier detection. The core issue highlighted is the incorrect
identification of a smaller, distant cluster as outliers.

1. Neighbourhood reuse. The same neighbourhood size k selected for contextual density
and FusedNeighbor is reused, ensuring a uniform locality scale.

2. Cluster map. Let C = {Cy,Cy, ...} denote the current clusters after merging the low-
and high-density partitions.

3. Average local distance. For each cluster C;, compute

— 1
De- =
e

) avgKnnDist(x),

xeC;

the mean k-NN distance within that cluster.
4. Candidate check. For every x € O with provisional label C;, test
avgKnnDist(x) > aDc..

If true, x is confirmed as an outlier and assigned label —1; otherwise it is re-integrated
into C;.

Because points in a remote but internally coherent micro-cluster have neighbour distances
similar to D¢, they pass the test and are retained as a bona-fide cluster. Truly isolated points,
whose neighbour distances far exceed the cluster mean, remain labelled as anomalies. In
this manner, the global sensitivity of the scaled MST is balanced by a local, density-aware
verification step, yielding robust outlier detection across heterogeneous densities.

344

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

3.7 Label consolidation and final output

After verifying outliers, VelvetFlow combines the clusters from:

* Low-density subset clusters: Identified through FusedNeighbor + DBSCAN.
* High-density subset clusters: Discovered by HDBSCAN.

* Verified outliers: Marked with label —1.

Label Unification. We assign unique integer labels to each cluster, ensuring no overlap be-
tween the sets originating from A7 and Xy. All verified outliers remain labeled —1. This
final set of labels, denoted ¥y, is the ultimate output of the method.

3.8 Overall algorithmic workflow

The VelvetFlow pipeline, illustrated in Figure 2, processes multi-density datasets through
sequential stages including density classification, fused neighbor detection, and cluster merg-
ing.

® ' ()

Figure 2. VelvetFlow pipeline overview. The clustering process of VelvetFlow is depicted through
sequential steps labeled (a) to (h). This pipeline effectively handles multi-density clusters by
segregating high and low-density regions, employing specialized clustering techniques for each
subset, and utilizing MST-based methods for robust outlier detection and cluster consolidation.

VelvetFlow pipeline steps:

1. Compound dataset: The initial dataset containing clusters with varying densities.

345

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

. Density classification: Classification of data points into high-density (Xy) and low-

density (X7) subsets based on contextual density scores.

. FusedNeighbor identification: Detection of fused neighbors within the low-density

subset to identify potential micro-clusters.

. DBSCAN on fused neighbors: Application of DBSCAN clustering on the merged

neighbors obtained from step (c).

. HDBSCAN on high-density subset: Execution of HDBSCAN clustering on the high-

density subset classified in step (b).

. Merging clusters: Integration of clusters from steps (d) and (e), assigning noise points

to the nearest clusters and incorporating non-fused points from the low-density subset.

. Scaled MST outlier detection: Construction of a scaled Minimum Spanning Tree (MST)

on the entire dataset to identify outlier candidates through edge scaling and iterative
cutting.

. Final cluster formation: Verification and confirmation of outliers using k-NN within

their respective clusters, resulting in the final set of consolidated clusters.

Algorithm 3|succinctly captures these steps.

Algorithm 3 VelvetFlow clustering algorithm

Require: Dataset X, parameters (k, t, €fysed, MINPtSeysed, - - -)

Ensure: Final labels y,, . of size | X|

1:

_ e
N 22

CD; < ComputeContextualDensity (X, k)

(Xn, XL) < PartitionByDensity (X, {CD;},t)

(mergedLow, remainLow) <— FusedNeighbor (X, k)

DBSCANLabels;, < RefineLowDensityClusters(mergedLow, €fyseq, MinPtsgseqd)
HDBSCANLabelsy < ClusterHighDensity (X5)

rawLabels <— MergeLabels(DBSCANLabels;, HDBSCANLabelsy)
rawLabels[remainLow] +— —1 > Mark leftover low-density as noise
(MST, edges) < constructMST(X')

MST qled < scaledMST(MST, edges)

O <« ExtractCandidates(MST.4jeq)

: verifiedOutliers <— verifyOutliers(rawLabels, O)

Mark verifiedOutliers as —1

return rawLabels

Mathematically, each component (local density partitioning, FusedNeighbor + DBSCAN

in sparse zones, HDBSCAN in dense zones, and MST-based outlier detection) ensures a
multi-stage approach to capturing clusters that vary in scale, while systematically isolating
anomalies. This integrated pipeline has demonstrated strong performance across datasets
with distinct density profiles, as will be shown in the subsequent experimental results.

346

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

3.9 Time complexity analysis

To complete our methodological discussion, we summarize the computational complex-
ity of VelvetFlow in its main stages. The actual runtime may vary depending on data struc-
tures (e.g., kd-trees, approximate neighbor search), dimensionality d, and the fraction of
points classified as low- or high-density. We denote N as the total number of points in
X CRY

1) Computing contextual density.
e Naive: Pairwise distance checks for all N points incur O(N?).

e Optimized: Using spatial indices (kd-tree, ball tree) can reduce neighbor searches to
O(NlogN) for low to moderate d. Computing the local reachability metrics and nor-
malization then adds O(N - k) + O(N), which is dominated by O(NlogN) under a
good search structure.

2) Partitioning by density. Comparing each point’s density score to a threshold ¢ isan O(N)
operation.

3) FusedNeighbor on low-density subset. Let M be the number of points in the low-
density subset (so M < N).

 Neighbor construction: Building or re-indexing M points can cost O(M?) naively or
O(Mlog M) with optimized structures.

* Jaccard-based merging: In the worst case, checking pairwise Jaccard between M points
is O(M? x k). Converting to a graph approach, we might store up to O(M?) edges,
making the connected component merges O(M?).

 Overall: If M is large (close to N), the step can hit O(N?) in the worst case. However, if
M < N, it is significantly faster.

4) DBSCAN Refinement on fused clusters. Applying DBSCAN on each fused cluster of
size M < M yields O(M'?) naively or O(M'log M') with indexing. Summed across multiple
smaller clusters, the total remains < O(M?) (naive) or closer to O(Mlog M) if clusters are
well separated.

5) HDBSCAN on high-density subset. Let the high-density portion have (N — M) points:

e Naive: Building a mutual reachability graph and hierarchical tree can reach O((N —
M)?) if we rely on all pairwise distances.

e Optimized: In low d, specialized structures can reduce it to O((N — M)log(N — M)),
but practically O(N?) remains an upper bound for general dimensions.

347

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

6) Scaled MST for outlier detection. Constructing an MST on the full dataset:

* Naive: O(N?) for building the complete graph, plus O(N?) for standard MST algo-
rithms (like Prim’s or Kruskal’s on N? edges).

e Optimized (Using Prim’s Algorithm): Since VelvetFlow employs Prim’s algorithm for
MST construction, the time complexity can be improved with appropriate data struc-
tures:

— Using a binary heap: Prim’s algorithm runs in O(N?) time when implemented
with a simple binary heap, which is suitable for dense graphs.

— Using a Fibonacci heap: For sparse graphs, Prim’s algorithm with a Fibonacci
heap can achieve O(E + Nlog N) time complexity, where E is the number of edges.
However, in the context of constructing a complete graph, E = O(N?), and the
complexity remains O(N?).

e Edge scaling & cutting: Sorting N — 1 edges is O(NlogN), and iterative cuts plus
subgraph checks is O(N) or O(NlogN) overall.

7) k-NN verification of outliers. For each candidate outlier, verifying with a local k-NN
distance check inside its assigned cluster incurs O(k) per point once indexing is available,
or O(logN) if a tree-based search is used. Overall, this step is typically subsumed by the
preceding MST construction’s complexity.

Summary of overall complexity.

 Naive bound: O(N?), typically dominated by MST construction or pairwise neighbor
searches.

e Optimized bound: O(NlogN) for lower-dimensional data using advanced techniques
(e.g., kd-trees, Delaunay-based MST), though O(N?) can reappear if d is high or if many
subset merges demand dense graph computations.

In practice, we often observe performance closer to O(NlogN) for moderate N (up to a few
tens of thousands) and low d, especially if approximate neighbor searches or parallelization
are employed. Nevertheless, O(N?) remains a safe upper bound for VelvetFlow, particularly
if the dimension is large or M ~ N for the low-density partition.

4 Experimental setup

4.1 Datasets and ground truth

For our evaluation, we select four representative datasets that exhibit varying densities,
complex boundary shapes, and potential outliers:

348

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

1. Pathbased: Known for narrow curvilinear structures with multiple density levels.

2. Compound: Contains several clusters of diverse densities, including an elongated re-
gion and a few compact groups.

3. Jain: Emphasizes strong density contrasts between two clusters.

4. Synthetic (Multi-density): Aninternally generated dataset combining multiple density
clusters and additionally featuring a very sparse cluster scattered across the entire plane.
This setup is intended to highlight our algorithm’s robustness in handling both dense
regions and exceedingly sparse outliers.

Each dataset is assumed to contain ground truth labels in its third column (the first two
columns represent the coordinates). A typical example of formatting is:

Featurel Feature2 GroundTruth
X1,1 X1,2 B4
X21 X2,2 N

We evaluate clustering performance by comparing predicted labels with these ground truth
labels.

4.2 Implementation details

All algorithms, including our proposed VelvetFlow method, are implemented in Python.
We leverage libraries such as scikit-learn (for DBSCAN and OPTICS), and hdbscan (for
HDBSCAN). The networkx library handles MST construction. Our experiments ran on a
standard workstation equipped with 16 GB RAM and an 8-core Intel Core i7-9700K CPU
(3.6 GHz base clock). For data containing N points in IR?, VelvetFlow typically operates in
O(NlogN) or O(N?) depending on MST construction specifics (exact or approximate).

4.3 Parameter settings and baselines

We compare VelvetFlow against the following density-based baselines:

e DBSCAN [7]: tuned over a modest logarithmic grid for the radius parameter and
across a small range of core-point counts.

e HDBSCAN [12]: varied by several choices of min-cluster-size and min-samples, from
very small to moderately large values.

e MDBSCAN [13]: first sweeps a handful of neighbourhood sizes to stabilise the relative-
density histogram, selects the split threshold at the first clear valley of that histogram,

and finally refines the internal DBSCAN parameters on the same qualitative grid used
for vanilla DBSCAN.

349

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

Hyper-parameter search. All baselines receive an equal-budget grid or local search:

* DBSCAN: explores a radius grid centred on the k-dist elbow, with core-point counts
spanning low to medium values.

e HDBSCAN: evaluates several small, medium and relatively large settings for each of its
two key parameters.

* MDBSCAN: uses the neighbourhood sweep described above, sets the density split where
the empirical histogram shows a marked drop, then refines its internal DBSCAN pa-
rameters on the same qualitative grid as standard DBSCAN.

VelvetFlow requires tuning only a single neighbourhood size k and a density split thresh-
old t; all later stages reuse these values, eliminating the need for further parameter search.

5 Results

This section quantifies the performance of VelvetFlow against three competitive density-
based baselines-DBSCAN, MDBSCAN, and HDBSCAN-on four public benchmarks that
span a wide range of cluster shapes and density contrasts. All runs share the same hardware
platform described in Sec. baseline grids are reported in the supplementary material.
To keep the presentation focused, we highlight three metrics that jointly capture partition
integrity (NMI), pairwise agreement (ARI), and fine-grained boundary accuracy (Pairwise
)]

5.1 Evaluation metrics

e Normalised mutual information (NMI). Measures the mutual dependence between
predicted and ground-truth labels, normalised to [0,1]; 1 indicates perfect correspon-
dence.

¢ Adjusted rand index (ARI). Counts pairwise agreements and corrects for chance; val-
ues close to 1 denote high structural alignment.

* Pairwise F; score. Harmonic mean of pairwise precision and recall. Because it counts
every point-pair disagreement, this metric heavily penalises (i) boundary mis-merges
and (ii) the wrongful inclusion or exclusion of isolated points. Consequently, a high
pairwise F; not only signals clean cluster boundaries but also confirms that the algo-
rithm is identifying outliers accurately-precisely the objective of VelvetFlow’s scaled-
MST + k-NN verification gate.

b Definitions are provided in Sec.

350

Eyvazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

5.2 Synthetic dataset

The Synthetic benchmark packs elongated filaments, tight blobs, and isolated scatter into
a single scene, forcing algorithms to reconcile competing density scales. Table [1|shows that
VelvetFlow delivers the best score on every metric, edging past the strong HDBSCAN baseline
by +0.6 pp (ARI) and +0.4 pp (F;) while keeping parameter count to a minimum.

Table 1. Synthetic dataset — clustering accuracy. Best values are bold.
Method NMI ARI Pairwise F;
DBSCAN 0.9471 0.9496 0.9612
MDBSCAN 0.9489 0.9536 0.9643
HDBSCAN 0.9426 0.9656 0.9734
VelvetFlow 0.9522 0.9713 0.9778

DBSCAN Clustering HDBSCAN Clustering
(eps=0.1, minpts=12 Ground Truth Clusters (min_cluster_size=2, min_samples=7)

" W, R A\Y)
o o .
. Noise
‘ Cluster 0
-1 1 . Cluster 1
H Cluster 2
= Cluster 3
clust 2 Cluster 4
Clust
Noiss T20 -5 710 -05 00 05 10 1S -20 -15 -10 -05 00 05 10 15
MDBSCAN VelvetFlow Final Clusters
.
®e
° .
s . ¢
° 3 o .
o
h - .v\:ou; 1 h
oo .
u o
X 5 SN
o ¥
o ” .
‘ Clus
Clust
.
. M Clus
. Clust
. Clust
Cluster 5
2.0 15 10 05 00 05 10 15

;;;;;;;

Figure 3. Qualitative clustering output on the Synthetic dataset. Colours indicate predicted clusters;
black crosses show points finally labelled as outliers by VelvetFlow.

Discussion. VelvetFlow wins decisively because its contextual-density split (see the blue
points in Fig. 3)) isolates the elongated branch as a separate cluster before any merging takes
place. DBSCAN, MDBSCAN, and even the more flexible HDBSCAN all mis-handle this
structure-either absorbing the branch into neighbouring blobs or discarding it as noise-despite
exhaustive tuning. By detecting that cluster accurately, VelvetFlow achieves the strongest
metrics across the board.

351

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

5.3 Jain dataset

Jain consists of two intertwined clusters with markedly different internal densities. Ta-
ble 2|indicates that VelvetFlow achieves near-perfect recovery (ARI = 0.9942) and the highest
pairwise fidelity of all methods tested.

Table 2. Jain dataset. Best values are bold.
Method NMI ARI Pairwise F;
DBSCAN 0.8960 0.9584 0.9836
MDBSCAN 0.9300 0.9737 0.9897
HDBSCAN 0.9303 0.9664 0.9869
VelvetFlow 0.9777 0.9942 0.9978

DBSCAN Clustering HDBSCAN Clustering
(eps=1.7, minpts=8 Ground Truth Clusters (min_cluster_size=129, min_samples=2)

ring

e . e hase
K
NNNNN s a0’
. o 2
PR
BRI R
S A
1 ko toLe [
% S]] LA
: P
W L
ko)
X 13 10
wn s
i B
B ®
3
MMMMMM \VelvetFlow Final Clusters
- . - . Noise
« & &
K Lot .,
o5 . oo
wtt P s,
d 2. (KN
e, LIS
.o .
s CEED ey
- N 3 S «f
. !
I, i
o %
5 &~
wda, - soghhe
e) I 0 i lag
‘wﬁf’:..‘:.“
PRI)

Figure 4. Predicted partition on Jain. VelvetFlow resolves the narrow boundary while preserving the
sparser arm.

Discussion. Standard DBSCAN collapses the denser arm unless ¢ is dramatically re-
duced, which in turn over-splits the sparse arm. MDBSCAN and HDBSCAN mitigate this
effect but still misplace a small fraction of boundary points. VelvetFlow’s MST verification
removes these residual mis-assignments with the same k used in the earlier split phase, un-
derscoring the benefit of parameter reuse.

5.4 Isolation dataset

The Isolation dataset offers an ”easy-but-brittle” configuration: two tight clusters and sev-
eral distant singletons. Any over-aggressive merge collapses the ground truth, whereas a
slightly conservative radius leaves singletons as noise.

352

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

Table 3. Isolation dataset. Best values are bold.
Method NMI ARI Pairwise F;

DBSCAN 0.9837 0.9963 0.9978
MDBSCAN 0.9770 0.9937 0.9964
HDBSCAN 0.9541 0.9748 0.9855
VelvetFlow 1.0000 1.0000 1.0000

DBSCAN Clustering HDBSCAN Clustering
(eps=7.0, minpts=5 Ground Truth Clusters (min_cluster_size=120, min_samples=7)

S:;
e it
.| =
fzﬂamq“ . .
. iy | 200 O od e
. R W v S o
150 - . .
-
P
P p
MMMMMMM VelvetFlow Final Clusters
o
I i
%

Figure 5. Isolation: VelvetFlow retrieves both dense cores and every singleton without retuning.

Discussion. MDBSCAN recovers the two natural clusters but mistakenly absorbs the dis-
tant singletons into the nearest dense group, treating true outliers as regular members. HDB-
SCAN and DBSCAN make the opposite error: they flag the genuine cluster as noise and
label it an outlier set. By contrast, VelvetFlow recognises the different contextual densities
and performs explicit outlier detection, correctly preserving the clusters while isolating each
singleton as an anomaly.

5.5 Compound dataset

Compound mixes several compact groups with an elongated, low-density “tail,” making it
a classical test for shape preservation.

Table 4. Compound dataset. Best values are bold.
Method NMI ARI Pairwise F;
DBSCAN 0.9566 0.9791 0.9843
HDBSCAN 0.8890 0.9420 0.9560
MDBSCAN 0.9858 0.9939 0.9954
VelvetFlow 0.9926 0.9972 0.9979

353

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

DBSCAN Clustering HDBSCAN Clustering
(eps=1.5, minpts=3 Ground Truth Clusters (min_cluster_size=4, min_samples=2)

VelvetFlow Final Clusters

Figure 6. Result on Compound. The low-density tail (light blue) is preserved intact; dense blobs
remain distinct.

Discussion. VelvetFlow inherits MDBSCAN'’s strength at following multi-density struc-
ture, yet it adds a dedicated scaled-MST + k-NN verification gate that turns ambiguous tail
points into confirmed outliers. MDBSCAN recovers the natural clusters but keeps every tail
point inside the neighbouring blob, thereby labelling no outliers at all. HDBSCAN and DB-
SCAN reach the opposite conclusion: they do mark those tail points as noise, yet they shatter
the dense cores (HDBSCAN) or merge several of them together (DBSCAN). By combining
MDBSCAN:-style density adaptation with a principled outlier-verification stage, VelvetFlow
keeps all genuine clusters intact and produces a high-precision outlier list, delivering the
strongest overall scores.

5.6 Cross-dataset summary

Figure [7] aggregates ARI scores across all four datasets, normalised so that 1.0 denotes
the best method per dataset. VelvetFlow either ties or outperforms the strongest baseline
everywhere, with no dataset-specific parameter tuning. This consistency stems from a single
neighbourhood size k reused throughout the split, merge, and verification phases.

Take-away. VelvetFlow closes the accuracy gap to the best-in-class baseline on difficult
benchmarks and surpasses them on easy-yet-brittle or highly anisotropic scenes, without re-
quiring any dataset-specific retuning. The consistent wins across all metrics validate the design
principles laid out in Sec.

6 Conclusion

This paper introduced VelvetFlow, an engineering pipeline for robust clustering under het-
erogeneous densities with explicit, high-precision outlier detection. The method decomposes

354

Eyvazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)
Aggregate Normalised ARI across four datasets

1.041

102t

100t

0.98}

0.96

Normalised ARI (avg over datasets)

o
©
S

VelvetFlow MDBSCAN HDBSCAN DBSCAN

Figure 7. Normalised ARI across datasets (1 is better). VelvetFlow maintains the most stable
performance profile, indicating robust parameter transfer.

the task into three reusable stages that reuse a single neighbourhood size k: (i) a contextual-
density split that separates dense and sparse regimes, (ii) density-aware clustering via Fused-
Neighbor+DBSCAN on the sparse partition and HDBSCAN on the dense partition, and (iii) a
global, scaled-MST verification gate with a k-NN check that validates outliers and recovers
small, remote clusters. By keeping the locality scale consistent across stages, VelvetFlow re-
duces parameter burden while preserving interpretability through Jaccard overlaps and MST
edge jumps.

Across four benchmarks that mix tight blobs, elongated filaments, and isolated points,
VelvetFlow attains top or near-top performance on NMI, ARI, and pairwise F;, while pro-
ducing an explicit outlier list (Sec. [5). Qualitative inspections confirm that the pipeline pre-
serves anisotropic shapes in low-density regions and avoids domino-style misassignments at
dense boundaries. These gains arise from (a) matching the clustering strategy to each density
regime and (b) enforcing a global connectivity sanity check before finalising labels.

From a practical standpoint, VelvetFlow is designed as a drop-in workflow rather than
a single monolithic algorithm. It exposes few knobs chiefly (k,t) and reuses them end-to-
end, enabling stable transfer across datasets with minimal retuning. The stages are modular
and compatible with standard libraries (e.g., scikit-learn, hdbscan, networkx), and the
decision traces (neighbourhood overlaps, scaled MST edges) provide transparent diagnostics
for practitioners.

Limitations remain. Worst-case quadratic cost in k-NN construction and MST building
can bottleneck very large N, high-dimensional settings weaken Euclidean neighbourhoods,
and some sensitivity persists in (t,7,&) (Sec. [7). Nevertheless, the design naturally admits
approximate neighbours, distributed MSTs, and automated hyper-parameter search (Sec. [§),
which we view as the most impactful next steps.

In summary, VelvetFlow operationalises a simple principle: separate by context, cluster
locally, verify globally. This division of labour yields consistent accuracy across contrasting
density profiles and provides a principled path to anomaly handling turning a set of well-
understood components into a cohesive, reproducible pipeline for multi-density clustering.

355

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)
7 Limitations

e Computational complexity. In the worst case, both the k-NN construction and the
global MST stage scale as O(N?), which can become a bottleneck on data sets con-
taining hundreds of thousands of points or more. Even with tree-based indexing, the
guaranteed upper bound remains quadratic.

* Memory overhead. Storing the complete graph needed for Prim’s algorithm, together
with the intermediate edge-scaling factors, incurs O(N?) memory in dense regimes,
limiting applicability on commodity hardware when N is large.

e Parameter sensitivity. Although VelvetFlow re-uses the same neighbourhood size k in
several sub-stages, the method still exposes additional hyper-parameters such as the
density threshold t, the Jaccard cut-off 7, and the verification multiplier a. Their optimal
values are data-dependent and currently require manual or grid-search tuning.

* High-dimensional performance. The algorithm was validated mainly on 2-D bench-
marks; in high-dimensional spaces the curse of dimensionality can both slow neigh-
bour search and reduce the discriminative power of Euclidean distances used in the
contextual-density score and k-NN verification.

* FUSEDNEIGHBOR cost on large sparse partitions. If the low-density subset comprises
a sizeable fraction of the data, the pairwise Jaccard checks inside FUSEDNEIGHBOR can
again reach O(M?k), where M is the number of sparse points.

e Distance-metric limitation. All stages assume an ¢, metric; data sets with categori-
cal attributes, non-Euclidean geometries, or strong manifold structure may need cus-
tomised distance functions that are not yet supported.

* Limited theoretical guarantees. While empirical results are strong, formal proofs of
cluster-consistency or finite-sample error bounds have not yet been established.

8 Future work

* Approximate and distributed k-NN/MST. Integrating libraries such as FAISS or build-
ing GPU/Distributed versions of Prim’s algorithm could reduce both runtime and
memory usage, moving practical complexity closer to O(NlogN) for large N.

* Automatic hyper-parameter selection. Meta-learning or Bayesian optimisation could
be employed to adapt (k,t,T,a) on the fly, lowering the barrier to entry for non-expert
users.

* Streaming and incremental variants. Extending VelvetFlow to handle data arriving in
streams would require online updates to contextual densities, local merges, and MST
edges without full re-computation.

356

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

* Robustness in high-dimensional or mixed-type data. Future research should investi-
gate alternative distance measures (e.g. learned Mahalanobis, mixed Hamming/Euclidean)
and their impact on the contextual-density split and MST scaling.

* Theoretical analysis. Providing PAC-style guarantees for cluster recovery and outlier
false-positive rates would strengthen the method’s foundations.

* Semi-supervised and interactive extensions. Incorporating limited user feedback-
pairwise “must-link/cannot-link” constraints or active querying-could further refine
boundary cases while preserving the fully unsupervised core.

* Large-scale empirical validation. Benchmarking on million-point real-world data sets
(e.g. image embeddings, sensor networks) will clarify scalability trade-offs and spark
optimisations in the neighbourhood and MST stages.

* Interpretability tooling. Developing visual analytics that expose the split-phase deci-
sions, MST cuts, and k-NN verifications would aid practitioners in diagnosing param-
eter choices and understanding outlier rationale.

Funding

This research received no external funding.

Data Availability Statement

Data is contained within the article.

Conflicts of Interests

The authors declared no potential conflicts of interest with respect to the research, author-
ship, and/or publication of this article.

References

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: Ordering points to identify
the clustering structure, ACM SIGMOD Record 28(2) (1999) 49-60. https://doi.org/ 10.1145/
304181.304187

[2] W. Atwa, A. A. Almazroi, E. A. Aldhahr, N. F. Janbi, Active semi-supervised clustering algorithm
for multi-density datasets, International Journal of Advanced Computer Science & Applications
15 (2024). https:/ /doi.org/10.14569 /1] ACSA.2024.0151052

[3] D.Birant, A. Kut, ST-DBSCAN: An algorithm for clustering spatial-temporal data, Data & Knowl-
edge Engineering 60(1) (2007) 208-221. https://doi.org/10.1016 /j.datak.2006.01.013

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, LOF: identifying density-based local outliers, In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (2000)
93-104. https:/ /doi.org/10.1145/342009.335388

[5] W. Durani, D. Mautz, C. Plant, C. Bohm, DMDHC: Discovery of multi-density hierarchical clus-
ter structures, In Proceedings of the 2025 SIAM International Conference on Data Mining (SDM)
(2025) 261-269. https:/ /doi.org/10.1137/1.9781611978520.25

357

https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187
https://doi.org/10.14569/IJACSA.2024.0151052
https://doi.org/10.1016/j.datak.2006.01.013
https://doi.org/10.1145/342009.335388
https://doi.org/10.1137/1.9781611978520.25

Eyoazi et al. / Journal of Discrete Mathematics and Its Applications 10 (2025)

[6] P. A. Estévez, M. Tesmer, C. A. Perez, J]. M. Zurada, Normalized mutual information feature se-
lection, IEEE Transactions on Neural Networks 20(2) (2009) 189-201. https://doi.org/ 10.1109/
TNN.2008.2005601

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discover-
ing clusters in large spatial databases with noise, In Proceedings of the 2nd Inter-
national Conference on Knowledge Discovery and Data Mining (KDD) (1996) 226-231.
https:/ /dl.acm.org/doi/10.5555/3001460.3001507

[8] H. Eyvazi, A. Rajaei, Accelerated DBSCAN via parallel, density-aware multi-objective genetic
optimization, Journal of Mathematical Modeling (2025) 809-822. https://doi.org/ 10.22124/
Jmm.2025.29702.2648

[9] J. Li, C. Wang, E. J. Verbeek, T. Schultz, H. Liu, MS20D: Outlier detection using minimum span-
ning tree and medoid selection, Machine Learning: Science and Technology 5(1) (2024) 015025.
https://doi.org/10.1088/2632-2153 /ad2492

[10] Y. Li, J. Wang, H. Zhao, C. Wang, Q. Shao, Adaptive DBSCAN clustering and GASA optimization
for underdetermined mixing matrix estimation in fault diagnosis of reciprocating compressors,
Sensors 24(1) (2023) 167. https:/ /doi.org/10.3390 /524010167

[11] G. T. Madhubhashini, Challenges faced by provincial television journalists in Sri Lanka, The
Journal of Development Communication 35 (2024) 73-79. https:// jdc.journals.unisel.edu.my/ in-
dex.php/ jdc/article/view /261

[12] L. Mclnnes, J. Healy, S. Astels, HDBSCAN: Hierarchical density based clustering, Journal of Open
Source Software 2(11) (2017) 205. https:/ /doi.org/10.21105/joss.00205

[13] J. Qian, Y. Zhou, X. Han, Y. Wang, MDBSCAN: A multi-density DBSCAN based on relative density,
Neurocomputing 576 (2024) 127329. https:/ /doi.org/10.1016/j.neucom.2024.127329

[14] J. M. Santos, M. Embrechts, On the use of the adjusted Rand index as a metric for evaluating
supervised classification, In International Conference on Artificial Neural Networks (2009) 175-
184. https:/ /doi.org/10.1007 /978-3-642-04277-5_18

[15] E Tombari, S. Salti, L. Di Stefano, Unique signatures of histograms for local surface description, In
Computer Vision-ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part III (2010) 356-369. https://doi.org/10.1007 /978-
3-642-15558-1 26

[16] H. Wang, J. Zhang, Y. Shen, S. Wang, B. Deng, W. Zhao, Improved density peak clustering with a
flexible manifold distance and natural nearest neighbors for network intrusion detection, Scientific
Reports 15(1) (2025) 8510. https:/ /doi.org/10.1038 /s41598-025-92509-4

[17] Z. Wang, Z. Ye, Y. Du, Y. Mao, Y. Liu, Z. Wu, J. Wang, AMD-DBSCAN: An adap-
tive multi-density DBSCAN for datasets of extremely variable density, In 2022 IEEE 9th
International Conference on Data Science and Advanced Analytics (DSAA) (2022) 1-10.
https:/ /doi.org/10.1109/DSAA54385.2022.10032412

[18] X. Wei, M. Peng, H. Huang, Y. Zhou, An overview on density peaks clustering, Neurocomputing
554 (2023) 126633. https:/ /doi.org/10.1016/j.neucom.2023.126633

[19] W. Zang, X. Liu, L. Ma, M. Sun, J. Che, Y. Zhao, Y. Wang, D. Wang, X. Liu, DPC-MFP: An adap-
tive density peaks clustering algorithm with multiple feature points, Neurocomputing 618 (2025)
129060. https:/ /doi.org/10.1016 /j.neucom.2024.129060

[20] Y. Zou, Z. Wang, X. Wang, T. Lv, A clustering algorithm based on local relative density, Electronics
14(3) (2025) 481. https:/ /doi.org/10.3390/electronics14030481

Citation: H. Eyvazi, M. Badzohreh, S. A. Shahrokhi, Velvetflow: An engineering pipeline for robust multi-density clus- | [E]3CyE [m]
tering, J. Disc. Math. Appl. 10(4) (2025) 333-358. Tl

g https://doi.org/10.22061/jdma.2025.12039.1131 I@&ﬁ

COPYRIGHTS

©2025 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attri-

bution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as
BY NC N . RS . .
the original authors and source are cited. No permission is required from the authors or the publishers.

358

https://doi.org/10.1109/TNN.2008.2005601
https://doi.org/10.1109/TNN.2008.2005601
https://dl.acm.org/doi/10.5555/3001460.3001507
https://doi.org/10.22124/jmm.2025.29702.2648
https://doi.org/10.22124/jmm.2025.29702.2648
https://doi.org/10.1088/2632-2153/ad2492
https://doi.org/10.3390/s24010167
https://jdc.journals.unisel.edu.my/index.php/jdc/article/view/261
https://jdc.journals.unisel.edu.my/index.php/jdc/article/view/261
https://doi.org/10.21105/joss.00205
https://doi.org/10.1016/j.neucom.2024.127329
https://doi.org/10.1007/978-3-642-04277-5_18
https://doi.org/10.1007/978-3-642-15558-1_26
https://doi.org/10.1007/978-3-642-15558-1_26
https://doi.org/10.1038/s41598-025-92509-4
https://doi.org/10.1109/DSAA54385.2022.10032412
https://doi.org/10.1016/j.neucom.2023.126633
https://doi.org/10.1016/j.neucom.2024.129060
https://doi.org/10.3390/electronics14030481

	Introduction
	Related work
	Multi-density extensions of DBSCAN
	Hierarchical and density-peak frameworks
	MST-based hybrid approaches
	Semi-supervised and active variants
	Positioning of VelvetFlow

	Methodology
	Overview of VelvetFlow
	Contextual density computation
	Mathematical formulation
	Normalization

	Data partitioning
	Threshold determination
	Mathematical justification
	Partitioning algorithm

	Clustering low-density subset
	FusedNeighbor algorithm
	Mathematical justification
	DBSCAN refinement
	Algorithmic representation
	Parameter selection
	Mathematical guarantees

	Clustering high-density subset
	Global MST for outlier detection in multi-density context
	Motivation for scaled MST
	MST construction and edge scaling
	Cutting the MST and identifying candidates
	k-NN verification of outliers

	Label consolidation and final output
	Overall algorithmic workflow
	Time complexity analysis

	Experimental setup
	Datasets and ground truth
	Implementation details
	Parameter settings and baselines

	Results
	Evaluation metrics
	Synthetic dataset
	Jain dataset
	Isolation dataset
	Compound dataset
	Cross-dataset summary

	Conclusion
	Limitations
	Future work

