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Abstract. One of the most discussed topics in social networks is community detection. As these
networks become more complex, spectral graph properties and graph-related structures are increas-
ingly used for community detection. In this paper, we examine the properties of the modularity
matrix, including the eigenvalues of the modularity matrix, modularity energy, and the Estrada mod-
ularity index. Additionally, we investigate the bounds for the energy and Estrada indices. Further-
more, considering the significant issue of estimating the number of communities in some community
detection algorithms in networks, we focus on the modularity eigenvalues.
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1 Introduction

Community detection, the process of identifying cohesive subgroups within networks,
has become a fundamental approach to analyzing complex systems. These subgroups, of-
ten referred to as communities, represent clusters of nodes that share stronger connections
among themselves than with nodes outside the group. By uncovering these communities,
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researchers can gain valuable insights into the structure and dynamics of networks. For in-
stance, in social networks, communities might represent groups of friends, colleagues, or
people with shared interests. In biological networks, they could correspond to protein com-
plexes or functional modules [10, 25]. Understanding the underlying principles of commu-
nity detection is essential for researchers across various disciplines, from sociology and biol-
ogy to computer science and engineering. As network data continues to grow in volume and
complexity, the development of advanced community detection techniques remains a vibrant
area of research [31, 32]. A multitude of algorithms and approaches have been developed to
tackle the challenge of community detection, each with its own strengths and limitations.
These methods range from simple clustering techniques to sophisticated optimization-based
approaches. Understanding the underlying principles of these algorithms is crucial for ef-
fectively applying them to different types of networks and extracting meaningful informa-
tion [2, 6]. As networks grow increasingly intricate, spectral graph theory has emerged as a
powerful tool for unraveling their underlying structure [23]. The graph is a mathematical
structure consisting of vertices (nodes) and edges that represent relationships or connections
between these vertices. It serves as an effective model for networks by illustrating relation-
ships between nodes at an abstract level. In spectral graph theory, graphs are commonly
represented using matrices, such as the adjacency matrix or the Laplacian matrix, to facilitate
analysis and computation. These matrices encapsulate the structure of the graph, with entries
indicating the presence or absence of edges between vertices. By analyzing the eigenvalues
and eigenvectors of these matrices, we can extract valuable information about the graph’s
properties, such as connectivity, clustering, and spectral partitioning [9, 11, 33]. In this paper,
we focus on leveraging the spectral properties of the modularity matrix to advance commu-
nity detection.

Let G = (V, E) be a simple graph with vertex set V(G) = {v1, · · · ,vn} and edge set E(G).
The adjacency matrix A(G) of the graph G is a symmetric matrix of order n with entries
aij, such that aij = 1 if ij ∈ E(G) and aij = 0 otherwise. The Laplacian matrix is defined by
L = D − A, where D is the degree matrix, a diagonal matrix where each entry represents the
degree of a vertex, and A is the adjacency matrix [33]. The energy of the graph G is defined
as E(G) = ∑n

i=1|λi|, where λ1,λ2, · · · ,λn are the eigenvalues of the adjacency matrix [20]. The
Estrada index is defined as EE(G) = ∑n

i=1 eλi , where λ1,λ2, · · · ,λn are the eigenvalues of the
adjacency matrix [11]. References [1, 14, 26] are provided for further study.
Modularity, introduced by Newman in 2004 [27], measures how effectively a network can
be partitioned into distinct groups or communities. It compares the actual number of con-
nections within these groups to the expected number in a random network with the same
number of nodes and edges. A higher modularity value indicates a stronger community
structure, making it a key metric for analyzing the organization and relationships within
complex networks.

As a fundamental metric, modularity quantifies the strength of a network’s division into
communities, providing valuable insights into the underlying structure and connectivity pat-
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terns. Given a graph G = (V, E), where V is the set of vertices and E is the set of edges, and
a division of the vertices into communities C1,C2, · · · ,Ck, the modularity Q is defined as fol-
lows:

Q =
1

2m ∑
i,j
(Ai,j −

kik j

2m
)δ(Ci,Cj),

where

• Aij is the ij-th entry of the adjacency matrix of the network (1 if there is an edge between
nodes i and j, otherwise 0).

• ki and k j are the degrees of nodes i and j, respectively.

• m is the total number of edges in the network.

• Ci and Cj are the community assignments of nodes i and j, respectively.

• δ(Ci,Cj) is the Kronecker delta function, which equals 1 if Ci = Cj (i.e., if nodes i and j
belong to the same community) and 0 otherwise [29].

The modularity matrix serves as a cornerstone in community detection, offering a struc-
tured approach to identifying cohesive groups within a network. Its spectral properties, par-
ticularly its eigenvalues and eigenvectors, provide deep insights into the underlying com-
munity structure [29]. The modularity matrix M = [Mij] is defined as follows:

Mij = Aij −
kik j

2m
. (1)

The modularity matrix essentially captures the difference between the observed number of
edges between two nodes and the expected number of edges based on a random graph
model. By examining the spectral characteristics of the modularity matrix, including its
eigenvalues and eigenvectors, we aim to uncover novel insights into community structure
[28]. Furthermore, we investigate the relationship between modularity and other graph-
theoretic concepts, such as graph energy and the Estrada index [11].

In graph theory, the Estrada index and graph energy are valuable tools with applications
in diverse fields. The Estrada index is particularly useful in analyzing chain molecular struc-
tures, protein degrees, and complex networks, while graph energy is closely connected to
molecular energy in chemistry [15, 16]. A critical challenge in network analysis is accurately
estimating the number of communities. This is essential for many community detection algo-
rithms, which often require a predetermined number of clusters. Consequently, determining
the optimal number of communities remains an open research question and is frequently
addressed through heuristic methods [12].

This paper provides a comprehensive analysis of the modularity matrix and its spectral
properties, offering new insights into community detection and paving the way for advanced
network analysis techniques.

361



Hosseini et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 359–374

2 Modularity matrix

The modularity matrix is a fundamental tool in network analysis, offering a quantitative
measure of the quality of a community division, facilitating the comparison of partitions,
and providing insights into network structure. By capturing the difference between the ob-
served number of edges within and between communities, the modularity matrix serves as
a valuable tool for identifying cohesive subgroups within a network. The eigenvalues and
eigenvectors of the modularity matrix provide deeper insights into the underlying commu-
nity structure. These spectral properties enable the development of effective algorithms for
community detection and network analysis, improving the understanding of how nodes are
organized into meaningful clusters. As mentioned in equation (2), the modularity matrix of
a graph is defined as M = A − P where:

• A is the adjacency matrix of the graph.

• P is the edge average matrix, with the entries pij =
kikj
2m , where ki and k j are the degrees

of nodes i and j, respectively, and m is the total number of edges in the graph [29].

If G is a connected, simple, and k-regular graph, then it is obvious that M(G) = A− k
n J where

J is the unit matrix.
For example if G is a complete and regular bipartite graph Kn,n then M(G) = A − 1

2 J.

Example 2.1. Let G be a complete bipartite graph Kn,m. Then

M =

[
− m

2n Jn×n
1
2 Jn×m

1
2 Jm×n − n

2m Jm×m

]
.

For example, we will have for a star graph Sn = K1,n, the referenced matrix is written as
follows:

M =
1
2


−n 1 · · · 1
1 − 1

n · · · − 1
n

1 − 1
n · · · − 1

n
...

... · · · ...
1 − 1

n · · · − 1
n

 .

Proposition 2.2. Let G be the complete multipartite graph G = Kn1,n2,··· ,nk . The modularity matrix

is a block-matrix. The entries in the block of size ni × nj are mij = (1 − δij)−
kjki
2m , where δij stands

for the Kronecker delta-symbol.

Proof. According to the adjacency matrix A of a complete multipartite graph G = Kn1,n2,··· ,nk ,
where V is the vertex set partitioned into k disjoint clusters V1, · · · ,Vk, the entries aij are
1 i f C(i) ̸= C(j) and 0 i f C(i) = C(j), where C(i) refers to the cluster membership of vertex i.

Let |Vi| = ni for each i = 1, · · · ,k, meaning the number of vertices in each cluster Vi is ni,

k j = n − ni where j ∈ Vi, and 2m =
n
∑

j=1
k j.
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If n1 ̸= n2 ̸= · · · ̸= nk, then the entries in the block equals

mij = (1 − δij)−
k jki

2m
.

If n1 = n2 = · · · = nk, then the entries in the block equals

mij = (1 − δij)−
k2

i
2m

.

Graph partitioning is the process of dividing a graph into smaller, more manageable com-
ponents. These components, often referred to as clusters or communities, can be character-
ized by specific properties. Numerous algorithms have been developed to address graph
partitioning problems. Fiedler [17] pioneered the spectral clustering method, while New-
man and Girvan [30] introduced the modularity clustering approach. Newman [28] later
provided a detailed explanation of modularity clustering. It has been shown [22] that using
normalized modularity matrices and normalized adjacency matrices yields identical cluster-
ing results. The allocation of positive modularity eigenvalues plays a crucial role in com-
munity detection. Bolla [4] demonstrated that having zero as the largest eigenvalue of the
modularity matrix is a sufficient but not necessary condition for the network to be indivisi-
ble. In the following we present relevant theorems related to these issues.

As an alternative to the standard modularity matrix, Bolla [3] proposed the normalized
modularity matrix, defined as:

MD = D−1/2MD−1/2,

where D is the diagonal degree-matrix. The spectrum of the normalized modularity matrix
lies within the interval [−1,1]. A key property of the normalized modularity matrix is that it
always has an eigenvalue equal to 0, with the corresponding eigenvector given by

√
d, where

d = (d1,d2, · · · ,dn) represents the degree vector of the graph (where each di is the degree of
vertex i). The normalized adjacency matrix is defined as follows:

AD = D−1/2AD−1/2,

where D is the diagonal degree-matrix [22].
Sylvester’s inertia theorem states that if a symmetric matrix is congruent to a diagonal

matrix (i.e., there exists an invertible matrix that transforms the symmetric matrix into a
diagonal form), the number of positive, negative, and zero entries on the diagonal (the inertia
of the matrix) is invariant under congruence transformations. In simpler terms, the law tells
us that the number of positive, negative, and zero eigenvalues of a symmetric matrix does
not change if the matrix is transformed by a congruent matrix. These counts are called the
inertia of the matrix. The proof of this theorem is presented in reference [21].

Lemma 2.3. (Sylvester’s inertia theorem) If A is a symmetric matrix of order n and B is a non-
singular matrix of order n, then BT AB and A have the same number of positive (pos), negative (neg),
and zero (zero) eigenvalues. This means they share the same inertia, denoted as
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inertia(pos,neg,zero),

where pos+neg+zero=n.

Theorem 2.4. [22] Let 0 be a simple eigenvalue of MD, and 1 a simple eigenvalue of AD. If λ ̸= 0,1
then (λ,u) is an eigenpair of AD if and only if (λ,u) is an eigenpair of MD.

Theorem 2.5. Let G be a graph with the adjacency matrix A with

inertia(pos,neg,zero),

pos ≥ 1. Then the normalized modularity matrix MD = D−1/2MD−1/2 and the modularity matrix
M have the following inertia:

inertia(pos-1,neg,zero+1).

Proof. According to Lemma 2.3, A and its normalized adjacency matrix AD = D−1/2AD−1/2

have the same inertia, so it holds for M and MD as well. On the other hand, the correspond-
ing eigenvector of eigenvalues 1 of AD is

√
d and also MD has an eigenvalue of 0 with an

eigenvector
√

d. According to theorem 2.4, if λ ̸= 0,1 then (λ,u) is a eigenpair of AD if and
only if (λ,u) is a eigenpair of MD.

Theorem 2.6. Let G be a k-regular graph of order n, then the edge average matrix P contain eigen-
value 0, k with multiplicity n − 1 and 1, respectively.

Proof. The sum of the entries in each row of the matrix P is equal to k, so k and 0 are eigen-
values.

The independence number of a graph G, denoted by α(G), is a valuable concept in com-
munity detection. It represents the maximum number of vertices that can be selected from
G such that no pair of vertices is directly connected [5]. The upper bound for the indepen-
dence number of a graph, using the maximum eigenvalue λmax of the normalized Laplacian,
is given by

α(G) ≤ n(1 − 1
λmax

)
∆
δ

. (2)

Specifically, ∆ and δ are maximum and minimum degree of G respectively. This bound is
derived from the fact that the normalized Laplacian matrix is positive semidefinite, and its
eigenvalues are real and non-negative. Moreover, the normalized Laplacian matrix has an
eigenvalue of 0 with multiplicity equal to the number of connected components in the graph
[8]. In the following we employ eigenvalue-based approaches to estimate the independence
number, utilizing both the modularity matrix and its normalized counterpart.

Proposition 2.7. Let λ1 be the smallest eigenvalue of MD then

α(G) ≤ n(1 − 1
1 − λ1(MD)

)
∆
δ

. (3)
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Proof. According to [13], the relationship between the largest eigenvalue of the normalized
Laplacian matrix LD and the smallest eigenvalue of the normalized modularity matrix MD is
derived as λmax = 1 − λ1(MD). Therefore, according to relation (3), the theorem is proved.

3 Modularity energy and modularity Estrada

Modularity energy is a concept analogous to graph energy, but it is specifically designed
to measure the strength of connections within and between communities in a network. It
is calculated using the eigenvalues of the modularity matrix. If G is a graph and M is its

modularity matrix. The modularity energy of G is defined as Emod(G) = E(M) =
n
∑

i=1
|λi(M)|,

where λi(M) are the eigenvalues of M.

Example 3.1. If G = Kn and M and MD denote the modularity matrix and the normalized modularity
matrix, respectively. The modularity energy equals:

E(M) =
n

∑
i=1

∥λi(M)∥ = n − 1.

E(MD) =
n

∑
i=1

∥λi(MD)∥ = 1.

In this section, we derive the upper and lower bounds for the modularity energy. The
first Zagreb index, denoted as M1 = ∑n

i=1 k2
i , is a topological index used to characterize the

degree-based properties of a graph G [19].

Theorem 3.2. Let G be a connected and simple graph and M it’s modularity matrix, then

E(M) ≥ δ + ∆ − n − 1
n

√
nM1 − 4m2

n − 1
− 2m

n
, (4)

where the minimum and maximum degrees are indicated by δ and ∆ respectively.

Proof.

M1 =
n

∑
i=1

k2
i = k2

1 + k2
2 + · · ·+ k2

n ≥ ∆2 +
(k2 + · · ·+ kn)2

n − 1

= ∆2 +
(2m − ∆)2

n − 1
,

on the other hand, by multiplying both sides by n − 1, we obtain

(n − 1)M1 ≥ ∆2(n − 1) + 4m2 − 4m∆ + ∆2.

Now consider function f (∆) = n∆2 − 4m∆ + 4m2 − (n − 1)M1 ≤ 0. To compute the discrim-
inant of f (∆), we obtian:
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∆1,2 =
2m
n ± n−1

n

√
nM1−4m2

n−1 .

Therefore, from the relation δ ≤ 2m
n , the result is δ + ∆ ≤ 2m

n + ∆. The inequality (4) follows
easily from E(M) ≥ 2m/n.

Theorem 3.3. Let G be a simple, connected and k-regular graph with n vertices and m edges. Then

E(M) ≤
√

n(2m − k2), (5)

equality holds in (7) if and only if G is isomorphic to k̄n.

Proof. Suppose that λi(M) be the eigenvalues of the modularity matrix M(G), then

E(M) =
n
∑

i=1
|λi(M)|≤

√
n
∑

i=1
12 ×

√
n
∑

i=1
λi(M)2 =

√
n ×

√
2m − k2.

To quantify the overall strength of community structure in a graph, we introduce the
modularity Estrada index, a topological invariant derived from the spectral properties of the
modularity matrix. If G is a graph and M is it’s modularity matrix the modularity Estrada

index is defined as EEmod(G) = EE(M) =
n
∑

i=1
eλi(M) where λi(M) are the eigenvalues of M.

This index, leverages the concept of the Estrada index, a well-established graph invariant,
to characterize the community structure in terms of the exponential sum of the eigenvalues
of the modularity matrix. It seems that, a higher value of EEmod(G) indicates a stronger and
more cohesive community structure within the graph. The spectral moment of order k of a

graph is defined as M(G,k) =
n
∑

i=1
λk

i .

Example 3.4. Let G be a complete graph of order n with the modularity matrix M. Also, let λi(M)

be the eigenvalues of the modularity matrix and M(G,k) =
n
∑

i=1
(λi(M))k is the spectral moment of

graph. Then

EE(M) =
n

∑
i=1

eλi(M) =
n

∑
i=1

∞

∑
k=0

(λi(M))k

k!

=
∞

∑
k=0

M(G,k)
k!

= n +
−(n − 1)

1!
+

n − 1
2!

+ · · · = n + (n − 1)(
1
e
− 1) = 1 +

n − 1
e

.
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Example 3.5. Let G be a complete graph of order n with the normalized modularity matrix MD. Also,
let λi(MD) be the eigenvalues of the normalized modularity matrix. Then

EE(MD) =
n

∑
i=1

eλi(MD) =
n

∑
i=1

∞

∑
k=0

(λi(MD))
k

k!

=
∞

∑
k=0

M(G,k)
k!

= n +
−(n − 1)

n − 1
+ · · · = 1 +

n − 1
e1/n−1 .

Theorem 3.6. Let G be a simple, connected, and k-regular graph of order n with the modularity
matrix M. Then

EE(M) ≤ n − 1 + e
√

2m−k2
, (6)

the equality holds if and only if G = K̄n.

Proof. Using the definition Estrada index of M, we have:

EE(M) =
n

∑
i=1

eλi(M) =
n

∑
i=1

∑
k≥0

(λi(M))k

k!

= n +
n

∑
i=1

∑
k≥1

(λi(M))k

k!

= n + ∑
k≥1

1
k!
(

n

∑
i=1

(λi(M))k

= n + ∑
k≥1

1
k!
(

n

∑
i=1

((λi(M))2)k/2)

≤ n + ∑
k≥1

1
k!
(

n

∑
i=1

(λi(M))2)k/2

= n − 1 + ∑
k≥0

1
k!
(2m − k2)k/2.

In the following section, we show the trace of the matrix M, defined as Tr(M) =
n
∑

i=1
mii,

where mii represents the diagonal elements of the matrix.

Theorem 3.7. If M is the modularity matrix of the simple graph G, and M1 is the first Zagreb index,
then Tr(M) = −M1

2m .
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Proof. If A is the adjacency matrix and P is the average edge matrix of the graph G then
M = A − P is the matrix modularity. Therefore

Tr(M) = Tr(A − P)

= Tr(A)− Tr(P)

= 0 − Tr(P)

= −
n

∑
i=1

kiki

2m
= −

n

∑
i=1

k2
i

2m

= −

n
∑

i=1
k2

i

2m
=

−M1

2m
.

4 Community detection and modularity maximization

Community detection in networks is a fundamental task aimed at identifying groups of
nodes that are densely connected within themselves but sparsely connected to nodes in other
groups. A key metric in community detection is modularity Q, which quantifies the qual-
ity of a network partition into communities. Maximizing modularity is a well-known NP-
hard problem, requiring efficient algorithms to find optimal or near-optimal solutions [24].
Various approaches, including greedy algorithms, spectral methods, and optimization tech-
niques, have been proposed to address this challenge. Another critical aspect of community
detection is estimating the number of communities. Many algorithms require the number of
clusters as input, and the choice of this parameter significantly impacts the results. Although
several methods for estimating the number of clusters, such as spectral methods and statis-
tical techniques, exist, these approaches can be computationally expensive [7]. In this work,
we propose a simpler approach based on the eigenvalues of the modularity matrix. By an-
alyzing the distribution of eigenvalues, particularly the largest eigenvalue, we can obtain a
reasonable estimate of the number of communities in a network. This approach offers a prac-
tical and computationally efficient solution for estimating the number of clusters without the
need complex statistical methods. In this section, relationships between the eigenvalues of
the modularity matrix M and the average degree matrix P are presented.

Theorem 4.1. Let G be a simple, connected, k-regular graph with adjacency matrix A and average
degree matrix P. Then λi(M) = λi(A)− λi(P).

Proof. Since A and P are real symmetric matrices, A and P are diagonalizable. Moreover,
AP = PA which implies A and P are simultaneously diagonalizable. Therefore, the i-th eigen-
value of M is given by λi(M) = λi(A)− λi(P).

Lemma 4.2. [33] Let M be the modularity matrix of a graph G with eigenvalues λ1(M)≥ λ2(M)≥
· · · ≥ λn(M). The maximum modularity value Qmax is given by:
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Qmax =
n

4m λ1(M).

Theorem 4.3. Let A be the adjacency matrix of a graph G with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. The
maximum modularity value Qmax has the following bounds:

n
4m

λ2 ≤ Qmax ≤
n

4m
λ1. (7)

Proof. According to Lemma 4.2, the maximize Qmax, is corresponding with

Qmax =
n

4m λ1(M),

where λ1(M) is the largest eigenvalue of the modularity matrix. Using the [22], we have

λ1(A) ≥ λ1(M) ≥ λ2(A) ≥ λ2(M) ≥ · · · ≥ λn(A) ≥ λn(M).

Therefore, the result is obtained.

Theorem 4.4. Let M be the modularity matrix of a graph G of order n with c communities, and let
Mi be the matrix corresponding to the i-th community on the main diagonal of the modularity matrix
in the block form as follows:

M =


M1 M12 . . . M1c
MT

12 M2 . . . M2c
...

... . . . ...
MT

1c MT
2c . . . Mc

 .

Then

Q =

c
∑

i=1
(∑

ij
mij)

2m
. (8)

Proof. Consider the adjacency matrix A of a graph G with c clusters. The nodes of the graph
can always be reordered so that they are arranged according to their cluster memberships.
The ni ×ni adjacency matrices Ai of these clusters are located on the diagonal of the adjacency
matrix A and contain only intracluster links:

A =


A1 A12 . . . A1c
AT

12 A2 . . . A2c
...

... . . . ...
AT

1c AT
2c . . . Ac

 .

Therefore, the modularity matrix corresponding to it is as follows:

M = A − P =


M1 M12 . . . M1c
MT

12 M2 . . . M2c
...

... . . . ...
MT

1c MT
2c . . . Mc

 .
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On the other hand, according to [18],

Q = ∑
c∈C

(
|E(c)|
|E| − (

∑
v∈c

kv

2|E| )
2). (9)

The modularity can be decomposed into the sum of the modularity of its communities. Since
the modularity matrix is block-diagonal, with each block representing a community, the over-
all modularity value can be calculated by summing the diagonal elements of these blocks and
dividing by twice the number of edges, 2m.

5 Application of the eigenvalue of modularity

Let M be the modularity matrix of the graph G. Let

λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M),

be the eigenvalues of M, where λi(M) represents the i-th eigenvalue of the modularity matrix
M. The estimate (c∗) is the number of eigenvalues greater than the square root of the largest
eigenvalue:

c∗ =
n

∑
i=1

1{λi(M)≥
√

λ1(M)}. (10)

We investigated the relationship between the number of communities in a network and the
eigenvalues of its modularity matrix. Through Python-based experiments on various types
of graphs (complete, cyclic, Petersen, path, star, multipartite complete, and ladder graphs),
we observed a strong correlation between the number of communities and the number of
eigenvalues greater than the square root of the maximum eigenvalue. This finding suggests
that the eigenvalue spectrum of the modularity matrix can provide valuable insights into the
underlying community structure of a network. We further validated this approach by ap-
plying it to several well-known real-world networks. The estimated number of communities
closely matched the results obtained from traditional modularity-based algorithms.

In the following sections, we a brief overview of some of these networks and analyze
them, including social, technological, and biological networks, to identify community struc-
tures. Additionally, in Table 1, we present the calculated eigenvalues of the modularity ma-
trix and the corresponding estimated number of communities based on these eigenvalues.

The Les Misérables network is an undirected graph representing the co-occurrences of
characters in Victor Hugo’s novel. It consists of 77 nodes, each representing a character,
and 254 edges, indicating co-appearances in the same chapter. The weight of each edge
reflects the frequency of co-occurrence. This network exhibits a community structure, with
various algorithms suggesting a division into 5 to 6 communities. Our proposed method,
based on the eigenvalues of the modularity matrix, estimates the number of communities to
be 6, aligning with these previous findings. By analyzing the eigenvalues that exceed the
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Table 1. Nc= Number of detectioned communities
N(λi(M) ≥

√
λ1(M))=Number of eigenvalues greater than the square root of the largest eigenvalue.

Graph Vertex Edge
√

λ1(M) N(λi(M) ≥
√

λ1(M)) c∗ Nc

Complete n n(n-1)/2 0 0 1 1
P25 25 24 1.39 6 6 6
P14 14 13 1.34 3 3 3

Petersen 10 15 1 1 2 1
C5 5 5 0.78 1 2 2
C40 40 40 1.40 10 10 8
K2,2 4 4 1.49 1 1 1
K6,6 12 36 2.98 1 1 1

K2,5,6,55 68 767 2.53 1 1 1
W10 10 18 1.23 3 3 4
W55 55 108 1.40 10 10 7
CL23 46 69 1.71 8 8 6
L43 8 10 1.27 2 2 3
S4 5 4 1.05 1 1 1
S26 21 20 1.82 1 1 1

Davis-southern-women 32 69 2.09 4 4 3
Florentine-families 15 20 2.25 3 3 4

Les-miserables 77 254 3-05 6 6 6
Karate-club 34 78 2.23 3 3 3

Footbal 115 616 3.04 12 12 13
Facebook 4039 88234 12.21 62 62 60

square root of the maximum eigenvalue, we arrive at this estimate, offering a reliable and
computationally efficient approach for community detection.

Zachary’s karate club, a well-known benchmark dataset, represents social ties among
34 individuals in a karate club. This network is frequently used to evaluate community
detection algorithms, which typically identify between 2 and 4 communities. In this study,
we leverage the modularity eigenvalue method to estimate the number of communities in
this network, and our results indicate the presence of 3 distinct communities.

The American football network, compiled by Girvan and Newman, represents games
between Division IA colleges during the 2000 regular season. Comprising 115 nodes and
616 edges, this network is organized into 12 teams. Various community detection algorithms
have identified between 10 and 13 communities within this network. Our Python-based anal-
ysis, utilizing an eigenvalue-based modularity method, has yielded 13 communities, aligning
with the upper end of previously reported findings.

The Facebook network, a dataset comprising 4,039 nodes and 888,234 edges, includes
node features, circles, and ego networks. It has been previously partitioned into 60 com-
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munities using various community detection algorithms. Our investigation using Python,
employing an eigenvalue-based modularity method, identified 62 communities in this net-
work.

Figure 1. Communities of the Facebook network.

The Florentine families network, a dataset comprising 15 nodes and 20 edges, depicts
marriage relationships among 16 Italian families in 15th-century Florence. This network has
been studied extensively, with various community detection algorithms identifying 3 to 4
communities. Our investigation, using a Python-based approach relying on the eigenvalue
of the modularity matrix, also converges to a 3 community structure.

The Davis Southern women network is a social network dataset consisting of 32 nodes
representing 18 Southern women and 14 social events, collected by Davis and colleagues in
the 1930s. This network has been extensively studied in the context of community detection.
While previous analyses have identified 3 communities, our investigation using Python and
an eigenvalue-based modularity method suggests the presence of 4 distinct communities.

6 Conclusion

In this study, the role of the Estrada index and graph energy in analyzing the modular-
ity spectrum and estimating the number of communities in complex networks was investi-
gated. By integrating these spectral indices with the modularity matrix, a novel method for
evaluating the community structure of networks was introduced, which not only enhances
the accuracy of estimation but also offers deeper insights into the stability and organization
of communities. This matrix modularity spectral approach establishes a robust framework
for analyzing large-scale networks without requiring computationally intensive full cluster-
ing procedures. Furthermore, it lays the groundwork for developing efficient algorithms to
identify dynamic and hierarchical community structures.
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