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Abstract. This paper introduces the set of skew 2-Dyck paths - Dyck-like lattice paths that allow
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intersecting. An explicit enumeration formula for these paths is derived using the symbolic method
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demonstrating their enumerative equivalence.
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1 Introduction

Skew Dyck paths were introduced by Deutsch, Munarini and Rinaldi [2] in 2010. These
are Dyck paths with extra left steps (−1,−1) that do not cross up steps ((1,1) steps) and down
steps ((1,−1) steps). In the same paper, the authors showed that the number of skew-Dyck
paths of semi-length n is given by

n−1

∑
i=0

ci (1)
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where ci is the ith Catalan number,

ci =

(
2i
i

)
1

i + 1
.

They showed that Equation (1) also enumerates marked plane trees, hex trees, and Motzkin
paths in which there are no horizontal steps on the x-axis, while the remaining horizontal
steps come in two colours. Bijections between the set of skew-Dyck paths and other combi-
natorial structures were later constructed by Prodinger in [7]. The same authors of [2] further
derived expressions for the area enclosed between these paths and the x-axis in [3]. In 2019,
Selkirk studied a generalization of k-Dyck paths in her thesis [12], defining them as Dyck
paths with steps (1,1), and (1,−k) that start at the origin, remain in the first quadrant and
end on the x-axis. She further obtained enumerative formula for k-Dyck paths based on
path length. Interest in the enumeration of skew-Dyck paths and their generalizations has
remained strong, as evidenced by subsequent publications [1, 4, 6, 8–10].

We define a skew k-Dyck path as a lattice path that starts at the origin (0,0) and ends
on the x-axis, consisting of up-steps (1,1), down-steps (k,−k), and left-steps (−k,−k). We
define the semi-length of a skew k-Dyck path as the total number of down-steps and left-
steps in the path. Two examples of skew 2-Dyck paths of semi-length 3 are shown in Figure
1.

Figure 1. Skew 2-Dyck paths of semi-length 3.

In this paper, we enumerate the set of skew 2-Dyck paths in Section 2. In Section 3, we
construct bijections between the set of skew 2-Dyck paths and three distinct combinatorial
structures introduced therein. Section 4 presents two additional combinatorial structures
that are enumerated by the same sequence as the skew 2-Dyck paths. Finally, Section 5 con-
cludes the paper by summarizing the main results and proposing further questions related
to enumeration.

2 Enumeration of skew 2-Dyck paths

Let S(z) be the generating function for skew 2-Dyck paths, where z marks a down-step
or a left-step. The paths are decomposed according to the first down-step or left-step that
touches the x-axis. This is depicted in Figure 2.

Based on the decompositions, the generating function S(z) = S satisfies the functional
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Figure 2. Decomposition of skew 2-Dyck paths

equation

S(z) = 3zS(z)(S(z) + 1) + z(S(z) + 1) = z
(

3S2 + 4S + 1
)

. (2)

We apply the Lagrange Inversion Formula [14,15] to extract the coefficient of zn in the gener-
ating function S.

[zn]S(z) =
1
n

[
sn−1

](
3s2 + 4s + 1

)n

=
1
n

[
sn−1

]
(3s + 1)n(s + 1)n

=
1
n

[
sn−1

] n

∑
i=0

n

∑
j=0

(
n
i

)(
n
j

)
3isi+j

=
1
n

n−1

∑
i=0

(
n
i

)(
n

n − i − 1

)
3i. (3)

Since the Narayana or Runyon number is given by

N(n, i) =
1
n

(
n
i

)(
n

i + 1

)
(4)

then Equation (3) can be written in terms of the Narayana numbers as

[zn]S(z) =
n−1

∑
i=0

3iN(n, i).

We now advertise this result as a theorem.

Theorem 2.1. The number, sn, of skew 2-Dyck paths of semi-length n is given by

sn =
n−1

∑
i=0

3iN(n, i) (5)

where N(n, i) is the Narayana number given by Equation (4).
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By writing Equation (2) as S = z
(
(1 + S)2 + 2S(1 + S)

)
,S = z

(
3S2 + (4S + 1)

)
and S =

z
(
(1 + 2S)2 − S2) and extracting the coefficient of zn in S, we realize that Equation (5) can

also be written as

sn =
1
n

n

∑
i=0

(
n
i

)(
2n − i
n + 1

)
2i,

sn =
1
n

n

∑
i=0

(
n
i

)(
n − i
i + 1

)
3i4n−2i−1

and

sn =
1
n

n

∑
i=0

(
n
i

)(
2(n − i)

n + 1

)
(−1)i2n−2i−1

respectively.

Theorem 2.2. The sequence of numbers sn, for n ≥ 3, satisfies the recurrence relation

(n + 1)sn = (8n − 4)sn−1 − (4n − 8)sn−2, (6)

with initial conditions s1 = 1 and s2 = 4.

Proof. Since there is only one skew 2-Dyck path of semi-length 1 with one down-step then
s1 = 1. There are 3 skew 2-Dyck paths of semi-length 2 with two downs and 1 skew 2-Dyck
path of semi-length 2 with one down-step and one left-step. So s2 = 4. Now, from (2), we
have the quadratic equation

3zS(z)2 + (4z − 1)S(z) + z = 0

which simplifies to

S(z) =
(1 − 4z)−

√
4z2 − 8z + 1

6z
(7)

by means of quadratic formula. The first few terms of the sequence are 1,4,19,100,562, . . .,
which is sequence A007564 in [13]. From (7), we have

1 − 6zS(z)− 4z =
√

4z2 − 8z + 1. (8)

Differentiating Equation (8) with respect to z, and simplifying further gives

−6zS′(z)− 6S(z)− 4 =
8z − 8

2
√

4z2 − 8z + 1
.

So, (
6zS′(z) + 6S(z) + 4

)√
4z2 − 8z + 1 = 4 − 4z.
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Multiplying through by
√

4z2 − 8z + 1 results in(
6zS′(z) + 6S(z) + 4

)(
4z2 − 8z + 1

)
= (4 − 4z)

√
4z2 − 8z + 1. (9)

Substituting (8) into (9), results in

z
(

4z2 − 8z + 1
)

S′(z) + (1 − 4z)S(z)− 2z = 0. (10)

To obtain the recurrence equation, let S(z) = ∑∞
n=0 snzn so that S′(z) = ∑∞

n=1 nsnzn−1. We
substitute S(z) and S′(z) into (10) to obtain(

4z2 − 8z + 1
) ∞

∑
n=1

nsnzn + (1 − 4z)
∞

∑
n=1

snzn − 2z = 0

which is the same as

∞

∑
n=1

4nsnzn+2 −
∞

∑
n=1

(8n + 4)snzn+1 +
∞

∑
n=1

(n + 1)snzn − 2z = 0.

This results in the recurrence relation

(n + 1)sn = (8n − 4)sn−1 − 4(n − 2)sn−2

for the number of skew 2-Dyck paths of semi-length n ≥ 3.

Definition 2.3 ( [5]). A sequence ak is log-convex if and only if the sequence ak+1
ak

is increasing.

For example, 1,4,19, . . . is log-convex since 4
1 , 19

4 . . . is increasing. We shall use the following
lemma to show that the sequence of sn is log-convex.

Lemma 2.4 ( [5, Theorem 3.10]). Let zn,n ≥ 0, be a sequence of positive numbers and satisfies the
three-term recurrence

(α1n + α0) zn+1 = (β1n + β0) zn − (γ1n + γ0) zn−1 (11)

for n ≥ 1, where α1 + α0, β1 + β0,γ1 + γ0 are positive for n ≥ 1. Suppose that z0,z1,z2 is log-convex,
then the sequence zn(n ≥ 0) is log-convex if one of the following conditions holds:

(i) B,C ≥ 0,

(ii) B < 0,C > 0, AC ≥ B2 and z0B + z1C ≥ 0 or

(iii) B > 0,C < 0, AC ≤ B2 and z0B + z1C ≥ 0,

where

A =

∣∣∣∣ β0 β1

γ0 γ1

∣∣∣∣ , B =

∣∣∣∣γ0 γ1

α0 α1

∣∣∣∣ and C =

∣∣∣∣α0 α1

β0 β1

∣∣∣∣ .
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Theorem 2.5. The sequence of numbers sn is log-convex, sn+1
sn

is bounded above by 8 and limn→∞
sn+1

sn
=

4 + 2
√

3.

Proof. Rewrite the recurrence relation (6) as

(n + 2)sn+1 = (8n + 4)sn − (4n − 4)sn−1

for n ≥ 2. Now, comparing this equation with Equation (11), results in z0 = 1,z1 = 4,α0 = 2,
α1 = 1β0 = 4, β1 = 8,γ0 = −4 and γ1 = 4 with A = 48, B = −12 and C = 12. Since B < 0,C >

12, AC = 576 > 144 = B2 and 1(−12) + 4(12) = 36 > 0, then by option (ii) in Lemma 2.4, sn is
log-convex.

We now find the bounds of sn. Rewrite the recurrence relation,

(n + 1)sn = (8n − 4)sn−1 − (4n − 8)sn−2,

as

(n + 2)sn+1 − (8n + 4)sn + 4(n − 1)sn−1 = 0.

Since 4(n − 1)sn−1 is non-negative, it follows that

(n + 2)sn+1 − (8n + 4)sn ≤ 0.

So,

(n + 2)sn+1 ≤ (8n + 4)sn.

This means that
sn+1

sn
≤ 8n + 4

n + 2
≤ 8n

n
= 8.

Finally, we strive to find the limit of sn+1
sn

as n tends to infinity.
According to [16, Theorems 9 and 10], a three-term recursive relation,

(n + 2)sn+1 = (2dn + d)sn +
(

4c − d2
)
(n − 1)sn−1 (12)

has the limit,

lim
n→∞

sn+1

sn
= d + 2

√
c (13)

The recurrence under investigation is

(n + 2)sn+1 = (8n + 4)sn − 4(n − 1)sn−1.

So, comparing this recurrence relation with Equation (12), we have 2dn + d = 8n + 4 and
4c − d2 = −4. This implies that d = 4 and c = 3. Thus, by (13),

lim
n→∞

sn+1

sn
= d + 2

√
c = 4 + 2

√
3

as desired.
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3 Bijections

In this section, we construct bijections between the set of skew 2-Dyck paths and the sets
of three other combinatorial structures.

3.1 2-Labeled box paths

We recall the definition of a subset of skew Dyck paths that was recently introduced by
Zhang and Zhuang in [17].

Definition 3.1. [17] A k-box path of size n is a skew Dyck path of semi-length (k + 2)n − 1
comprised of n UDkL factors where U represents a (1,1) step (up-step), D is a (1,−1) step (down-
step) and L is a (−1,−1) step (left-step).

Definition 3.2. [17] A box is a factor in a skew Dyck path that consists of three consecutive steps
UDL. These UDL factors protrude from the path in a box-like shape hence the motivation behind their
name.

We introduce a new class of box paths in which the factors are of the form UDLD. We
shall call a path of the form DUDLD a box.

Definition 3.3. A 2-labeled box path is a 1-box path whose boxes are labeled 1 or 2 except those
that touch the x-axis with another box path on its right which receives only label 1.

Figure 3 depicts a 2-labeled box path of size 2. We establish a bijection between the set of
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Figure 3. A 2-box labeled path with two factors.

2-labeled box paths and skew 2-Dyck paths in the following theorem.

Theorem 3.4. There exists a bijection between the set of skew 2-Dyck paths of semi-length n and the
set of 2-labeled box paths with n factors.

Proof. Given a skew 2-Dyck path, we obtain the corresponding 2-labeled box path by per-
forming the following transformation. For every (−2,−2) step (left-step) or (2,−2) step
(down-step) encountered, delete the step and draw a unit up-step, followed by a unit down-
step, then a unit left-step and finally a unit down-step, i.e., draw a factor UDLD. Label any
box corresponding to a down-step (respectively, left-step) as 1 (respectively, 2). See Figure 4
for an example.
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Figure 4. A procedure of obtaining a 2-labeled box path on 21 up-steps from a skew 2-Dyck path of
semi-length 7.

We obtain the reverse procedure: Consider a 2-labeled box path with n factors, that is,
with 3n unit up-steps. For each factor UDLD, replace it with a down-step of length 2. If the
box was labeled 2, then label the down-step as 2. Now, replace each down-step labeled 2
with a left-step of length 2. This procedure is depicted in Figure 5
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Figure 5. A procedure of obtaining a skew 2-Dyck path of semi-length 7 from a 2-labeled box path
with 21 unit up-steps.

3.2 3-Leaf-labeled plane trees

We introduce a new class of plane trees with the length of a path defined as the number of
edges on the path.

Definition 3.5. A 3-leaf-labeled plane tree is a plane tree with all leaves at lengths multiples of 3
from the root and a leaf at length 1 from its immediate branching points is labeled as follows: If the
rightmost sub-tree rooted at its root is a leaf or is empty, then that leaf is labeled either 1 or 2 and if
that sub-tree has at least three vertices, then the leaf is strictly labeled 1.

An example of a 3-leaf-labeled plane tree is shown in Figure 6.

Theorem 3.6. There exists a bijection between the set of 2-labeled box paths with n factors and the set
of 3-leaf-labeled plane trees with 3n + 1 vertices.

Proof. Consider a 2-labeled box path with n up-steps. Draw a vertex which is the root of the
3-leaf-labeled plane tree under construction. We traverse the path starting at the origin. For
each up-step encountered, draw a new vertex. If a down-step is encountered, move up the
tree along the right hand side towards the root. If the down-step was labeled 1 (respectively,
2), then label the vertex encountered as one moves up the tree as 1 (respectively, 2). Since
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Figure 6. A 3-leaf-labeled plane tree on 10 vertices.

a factor (UDLD) corresponds to three down-steps, we have that each branching point is a
multiple of 3 from the last vertex drawn. For each up-step traversed, there is a corresponding
vertex in the constructed tree. In addition, an initial vertex (root) was introduced. So, the
constructed tree has 3n + 1 vertices and is a 3-leaf-labeled plane tree.

Conversely, given a 3-leaf-labeled plane tree, traverse the tree in preorder and build a 2-
labeled box path as follows. For each vertex encountered as one moves away from the root,
draw an up-step. Now, for three consecutive vertices encountered as one moves towards the
root, draw a down-step, a left-step and a down-step in this order. If a leaf labeled 1 (respec-
tively, 2) is encountered, label the corresponding down-step as 1 (respectively, 2). These are
the labels of the boxes. The Dyck path obtained is a 2-labeled box path. The labeling of the
boxes agrees with the description in the definition of a 2-labeled box path. An illustration of
this bijection is shown in figure 7.
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Figure 7. A 2-labeled box path with 7 factors and its corresponding 3-leaf-labeled plane tree on 22
vertices.

By Theorems 3.4 and 3.6, we get the following corollary.

Corollary 3.7. There is a bijection between the set of skew 2-Dyck paths of semi-length n and the set
of 3-leaf-labeled plane trees with 3n + 1 vertices.

3.3 2-Edge-labeled plane trees

We introduce 2-edge-labeled plane trees defined as follows:
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Definition 3.8. A 2-edge-labeled plane tree is a plane tree whose rightmost sub-tree is of even
length from the root to the leaf while all other sub-trees are of even length from their branching point
such that any two consecutive edges of the rightmost sub-tree are labeled either 1 or 2 and any of other
sub-trees are labeled 1, excluding the pair farthest from the root (respectively, branching point).

Consider an example of a 2-edge-labeled plane tree in Figure 8.
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Figure 8. A 2-edge labeled plane tree on 9 vertices.

Theorem 3.9. There exists a bijection between the set of skew 2-Dyck paths of semi-length n and the
set of 2-edge-labeled plane trees with 2n + 1 vertices.

Proof. Given a skew 2-Dyck path, we obtain its corresponding 2-edge-labeled plane tree by
performing the following transformation. First, convert the down-steps (have length 2) and
left-steps (have length 2) of the path into pairs of unit down-steps and unit left-steps respec-
tively. Starting with an initial vertex which will be the root of the tree, we build the tree as
follows: For every up-step encountered, draw a vertex. For every two consecutive down-
steps encountered, move up two steps towards the root in the constructed tree and label the
two edges encountered as 1 (do not label the first two). For every two consecutive left-steps
encountered, move up two steps towards the root in the constructed tree and label the two
consecutive edges as 2. We obtain a 2-edge-labeled plane tree with 2n + 1 vertices since each
up-step (2n in total) corresponds to a non-root vertex in the tree.

For the reverse procedure, consider a 2-edge-labeled plane tree. We traverse the tree in
preorder to obtain the corresponding skew 2-Dyck path as follows: Moving away from the
root, for any vertex encountered, draw an up-step. Moreover, moving toward the root for
any unlabeled edges or edges labeled 1 encountered, draw a down-step and for any edge
labeled 2 encountered, draw a left-step. From the skew path obtained, transform it into a
skew 2-Dyck path by combining any pair of consecutive down-steps or left-steps into a new
step of length 2. The resulting structure is a skew 2-Dyck path of semi-length n.

In Table 1, we get all the four skew 2-Dyck paths of semi-length 2 listed against their
corresponding 2-edge-labeled plane trees with 5 vertices.
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Skew 2-Dyck paths 2-edge-labeled plane trees
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Table 1. The four skew 2-Dyck paths of semi-length 2 and their corresponding 2-edge labelled plane
trees on 5 vertices.

4 Two combinatorial structures counted by the sequence

The sequence 1,4,19,100, . . . appears as entry A007564 in the Online Encyclopedia of Inte-
ger Sequences (OEIS) [13]. The following combinatorial structures are listed therein as being
counted by this sequence:

(i) The number of Schröder paths of semi-length n in which there are no (2,0)-steps at
level 0, and where such steps at higher levels come in two colours;

(ii) The number of Schröder paths of semi-length n − 1 in which the (2,0)-steps at level 0
come in three colours, and those at higher levels come in two colours;

(iii) The number of (left) planted binary trees with n edges in which each vertex has a des-
ignate favourite neighbour.

In addition to skew 2-Dyck paths and the three combinatorial structures discussed in Section
3, we now present two more structures that are enumerated by this sequence.

4.1 Partially labeled plane trees with outdegree at most 2

Consider plane trees in which internal vertices have outdegree (i.e., number of children)
at most 2. Moreover, let each vertex of outdegree 1 (respectively, 2) be labeled with an integer
from the set {1,2,3,4} (respectively, {1,2,3}). We refer to these as partially labeled plane trees
with outdegree at most 2. Figure 9 displays all 19 such plane trees with 3 vertices.
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Figure 9. Partially labeled plane trees with 3 vertices.
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Let P denote the family of these trees. Let P(z) be the generating function for trees in P ,
where z marks each vertex. Symbolically, we obtain the functional equation:

P(z) = z + 4zP(z) + 3zP(z)2. (14)

Equation (14) is also the generating function for skew 2-Dyck paths, where z marks down-
steps and left-steps. Hence, the number of such plane trees with n vertices coincides with the
number of skew 2-Dyck paths of semi-length n.

4.2 Partially labeled binary trees

Next, consider binary trees in which non-root vertices are labeled according to the follow-
ing rules:

(i) A right child is labeled in three ways (i.e., 1, 2, or 3) if it has a left sibling, and in two
ways (i.e., 1 or 2) if it does not.

(ii) A left child is labeled in two ways (i.e., 1 or 2) if it does not have a right sibling. If it has
a right sibling, it is not labeled.

We refer to these as partially labeled binary trees. All 19 such binary trees on 3 vertices are
shown in Figure 9.
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Figure 10. Partially labeled binary trees with 3 vertices.

Let B(z) be the generating function for these trees, where z marks a vertex. Each internal
vertex may have left and/or right children, and labels are assigned according to the rules
above. This yields the functional equation:

B(z) = z + 2zB(z) + 2B(z) + 3B(z)2 = z + 4zB(z) + 3B(z)2,

which is identical to Equation (14). Therefore, the number of such binary trees with n vertices
also coincides with the number of skew 2-Dyck paths of semi-length n.

We now describe a bijection between the two structures introduced above.

Proposition 4.1. There exists a bijection between the set of partially labeled plane trees with n vertices
and outdegree at most 2, and the set of partially labeled binary trees with n vertices.

Proof. Let us begin with a partially labeled plane tree with n vertices and outdegree at most
2. We transform it into a partially labeled binary tree using the following rules:
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(i) For each internal vertex of outdegree 2 labeled i ∈ {1,2,3}, assign the label i to its right
child.

(ii) For each internal vertex of outdegree 1 labeled i ∈ {1,2}, assign the label i to its child
and make that child a left child.

(iii) For each internal vertex of outdegree 1 labeled i ∈ {3,4}, assign the label i − 2 to its
child and make that child a right child.

This process preserves the number of vertices and produces a valid partially labeled bi-
nary tree.

To obtain the reverse transformation:

(i) For each right child labeled i ∈ {1,2,3} that has a left sibling, assign the label i to its
parent.

(ii) For each left child labeled i ∈ {1,2} without a right sibling, assign the label i to its
parent.

(iii) For each right child labeled i ∈ {1,2} without a left sibling, assign the label i + 2 to its
parent.

This also retains the number of vertices and yields a valid partially labeled plane tree with
outdegree at most 2. The bijection is shown in Figure 11.

2

1 3

2 4

2 3

3

2

1 3

2 2

2 1

3

Figure 11. Bijection between partially labelled plane tree with outdegree at most 2 and partially
labelled binary tree.

It would be of interest to construct explicit bijections between the set of skew 2-Dyck paths
and each of the two combinatorial structures introduced in this section.

5 Conclusion and future work

In this article, we introduced the class of skew 2-Dyck paths and enumerated them with
respect to the number of down-steps and left-steps. A recurrence relation for counting these
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paths was derived, and we demonstrated that the resulting sequence is log-convex. Fu-
ture directions include refining the enumeration by considering additional parameters such
as the number of hills or valleys, the type of the final step, and the distribution between
down-steps and left-steps. The study can also be extended to skew k-Dyck paths for k ≥ 3,
potentially revealing deeper structural insights and further enumerative patterns. We con-
structed bijections between the set of skew 2-Dyck paths and the set of three other combi-
natorial structures: 2-labeled box paths, 3-leaf-labeled plane trees, and 2-edge-labeled plane
trees. Identifying additional combinatorial families that are equinumerous with skew 2-Dyck
paths remains an open and promising area of research. Additionally, we introduced two new
families of combinatorial objects - partially labeled plane trees with outdegree at most 2 and
partially labeled binary trees - and proved that they are counted by the same sequence as
skew 2-Dyck paths. A bijection was established between these two tree families. Develop-
ing explicit bijections between these trees and skew 2-Dyck paths would be a natural and
enriching continuation of this work.
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