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Abstract. A protected node is a node that is not a leaf and none of its children is a leaf, and also
a weakly protected node is not a leaf and at least one of its children is not a leaf. Let Pn and Wn be the
path length of the protected and weakly protected nodes in a random binary search tree (BST) of size
n, respectively. In this paper, we derive the exact mean and variance of these random variables and
show that

15Pn

11n lnn
→ 1

and
15Wn

14n lnn
→ 1

in probability.
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1 Introduction

Trees are defined as connected graphs without cycles, and their properties are basics of
graph theory. A rooted tree is a tree with a countable number of nodes, in which a particular
node is distinguished from the others and called the root node. A node with no descendants
is a leaf. In a rooted tree, a protected node is a node that is not a leaf and none of its children
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Figure 1. A BST corresponding to the permutation (5,9,6,4,7,2,3,1,8); protected nodes in bold where
P9 = 4 [8].

is a leaf. Also, a weakly protected node is a node that is not a leaf and at least one of its
children is not a leaf [2, 4].

The binary search tree (BST) grows from a random permutation that induces a BST prob-
ability model, which is nonuniform. These models are of prime importance in computer
science as it represents the backbone of some fundamental algorithms, such as Quicksort
(see [5] or [6]), and are basic efficient data structures in their own right [7]. In a binary search
tree (BST) grown from a uniform random permutation (U1,U2, ...,Un) of {1,2, ...,n}, the first
key U1 is moved to the root node such that its left and right subtrees are distinct (which are
empty so far). If the second key is smaller than the root key, it is moved to the left subtree
(i.e., if U2 < U1), to the right subtree, where it is placed in a node and linked as a right child
of the root. The subsequent keys go to the left or right subtrees, depending on whether they
are smaller than the root key, where they are recursively inserted into the subtree by the
same algorithm. If the permutations {1,2, ...,n} are equally likely, they lead to a non-uniform
probability distribution over the BST shapes. We call such a distribution the BST probability
model [8].

Figure 1 shows a BST of size 9 grown from the permutation (5,9,6,4,7,2,3,1,8). The nodes
represented by bold circles are protected. Also, Figure 2 shows a BST of size 9 grown from
the permutation (5,2,6,1,8,7,4,9,3). There, the nodes represented by bold circles are weakly
protected [1, 11].

We denote the number of protected and weakly protected nodes in a random binary
search tree of size n by Xn and Yn, respectively. Mahmoud and Ward [8] showed that

E(Xn) =
11
30

n − 19
30

, for n ≥ 4, (1)

E(X2
n) =

121
900

n2 − 151
450

n +
53

100
, for n ≥ 8. (2)
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Figure 2. A BST corresponding to the permutation (5,2,6,1,8,7,4,9,3); weakly protected nodes in bold
where W9 = 2 [9].

Recently, Mohammad Nezhad et. al [9] showed that

E(Yn) =
7
15

n − 8
15

, for n ≥ 4, (3)

E(Y2
n) =

49
225

n2 − 1357
3150

n +
123
350

, for n ≥ 10. (4)

Let Di be the number of edges from the root to the ith node in a random BST (the depth
of node i). The (internal) path length is defined as Kn = ∑n

i=1 Di. Then [6],

E(Kn) = 2(n + 1)Hn − 4n,

V(Kn) = O(n2), n → ∞,

which E(Kn) is asymptotically equivalent to 2n lnn and Hn = ∑n
j=1

1
j is the n-th harmonic

number.
Let Pn and Wn be the path length of the protected nodes and weakly protected nodes in a

random BST of size n, respectively (see Figures 1 and 2). We derive the mean and variance of
these random variables and show that

15Pn

11n lnn
→ 1

and
15Wn

14n lnn
→ 1

in probability.

2 Means

Assume that U1 is stored in the root of a binary search tree of size n. Then U1 − 1 and
n − U1 are the sizes of the left and right subtrees of the root, respectively. It is obvious that
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U1 is uniformly distributed over {1, ...,n}. We denote by (PU1 , XU1) and (P′
n−U1

, X′
n−U1

) the
pairs of the path length and the protected nodes in the left and right subtrees of the root,
respectively. Thus by direct enumeration we obtain the recurrence

Pn
D
= PU1−1 + P′

n−U1
+ XU1−1 + X′

n−U1
, for n ≥ 1, (5)

where D
= denotes equality in distribution. Also, let (WU1 ,YU1) and (W ′

n−U1
,Y′

n−U1
) be the

pairs of the path length and the weakly protected nodes in the left and right subtrees of the
root, respectively. Also, by direct enumeration we obtain the recurrence

Wn
D
= WU1−1 + W ′

n−U1
+ YU1−1 + Y′

n−U1
, for n ≥ 1. (6)

Theorem 2.1. Let Pn and Wn denote the path length of protected nodes and weakly protected nodes
in a random binary search tree of size n. Then

E(Pn) =
11
15

(n + 1)Hn −
63
30

n +
19
30

, for n ≥ 4,

which E(Pn) is asymptotically equivalent to 11
15 n lnn and

E(Wn) =
14
15

(n + 1)Hn −
72
30

n +
16
30

, for n ≥ 4,

which E(Wn) is asymptotically equivalent to 14
15 n lnn.

Proof. Conditioned on U1, the left and right subtrees have the distributions of random binary
search trees of sizes U1 − 1 and n − U1, respectively, and are (stochastically) independent of
each other. This implies that Pn, P′

n, Xn, X′
n, and U1 are independent and we obtain the

distributional recurrence

Pn
D
= PU1−1 + P′

n−U1
+ XU1−1 + X′

n−U1
, for n ≥ 1. (7)

Note that P0 = P1 = P2 = 0. The depth of the root node is zero. Whether the root node is
protected or not has no effect on the value of E(Pn). Taking the expectation of (7), we have

E(Pn) = E(PU1−1) + E(P′
n−U1

) + E(XU1−1) + E(X′
n−U1

).

Since PU1−1
D
= P′

n−U1
and XU1−1

D
= X′

n−U1
,

E(Pn) = 2E(PU1−1) + 2E(XU1−1)

= 2
n

∑
u=1

E(PU1−1|U1 = u)P(U1 = u)

+ 2
n

∑
u=1

E(XU1−1|U1 = u)P(U1 = u)

=
2
n

n

∑
u=1

E(Pu−1) +
2
n

n

∑
u=1

E(Xu−1).
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Thus

nE(Pn) = 2
n

∑
u=1

E(Pu−1) + 2
n

∑
u=1

E(Xu−1).

If Qn := nE(Pn), then
Qn − Qn−1 = 2E(Pn−1) + 2E(Xn−1).

Hence

nE(Pn) = (n + 1)E(Pn−1) + 2E(Xn−1),

and then
E(Pn) =

n + 1
n

E(Pn−1) +
2
n

E(Xn−1).

We have
j

(j + 1)(j + 2)
=

2
j + 2

− 1
j + 1

and
1

(j + 1)(j + 2)
=

1
j + 1

− 1
j + 2

. (8)

For simplicity, we set

αj =
2

j + 1
E(Xj), for j ≥ 1.

From (1),

αj =
11
15

j
j + 1

− 19
15

1
j + 1

, for j ≥ 1.

Now, from (8) and by relation Hn+1 = Hn +
1

n+1 ,

n−1

∑
j=1

αj

j + 2
=

11
15

n−1

∑
j=1

(
2

j + 2
− 1

j + 1

)
− 19

15

n−1

∑
j=1

(
1

j + 1
− 1

j + 2

)
=

11
15

(
2Hn+1 − 3 − Hn+1 +

1
n + 1

)
− 19

15

(
Hn+1 −

1
n + 1

− Hn+1 +
1
2

)
=

11
15

(
Hn+1 − 2 +

1
n + 1

)
− 19

15

(
1
2
− 1

n + 1

)
.

So,

E(Pn) =
n + 1

n
E(Pn−1) + αn−1.

By iteration,

E(Pn) = (n + 1)
n−1

∑
j=1

αj

j + 2
,

since P1 = 0. Hence,

E(Pn) = (n + 1)
[

11
15

(
Hn+1 − 2 +

1
n + 1

)
− 19

15

(
1
2
− 1

n + 1

)]
=

11
15

(n + 1)Hn −
63
30

n +
19
30

,

and proof of the first part is completed. With the same method we can obtain the mean of Wn.
The only difference is in relation (3). Since lim

n→∞
Hn = lnn, asymptotic results are obtained.
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From Theorem 2.1,

E(Kn)− E(Pn) =
19
15

(n + 1)Hn −
57
30

n − 19
30

∼ 19
15

n lnn

and

E(Kn)− E(Wn) =
16
15

(n + 1)Hn −
48
30

n − 16
30

∼ 16
15

n lnn.

Also, asymptotically,

E(Pn) ∼
11
14

E(Wn).

This result is consistent with the definition of two types of nodes under investigation.

3 Variances

In this section, we use relations (7) and (6) to develop a recurrence for the second mo-
ments. If we raise both sides of the distribution equalities (7) and (6) to the power of two
and take the expectation, expressions E(PU1−1XU1−1) and E(WU1−1YU1−1) appear. Thus, to
compute the variance of V(Pn) and V(Wn), we first need to evaluate E(PnXn) and E(WnYn).
Let Rn be the event that the root node is not protected. Then

Xn
D
= XU1−1 + X′

n−U1
+ 1 − IRn , for n ≥ 1,

where IRn = 1, if Rn occurs, and 0 otherwise [8]. When n ≥ 4, Rn occurs only if either the left
or right child of the root is a leaf.

Theorem 3.1. For n ≥ 8,

E(PnXn) =

 121n2−2225(n+1)Hn+4146n+330(n+1)(H2
n+1−H(2)

n+1)
450 , IRn = 0

121n2+1686n−665(n+1)Hn
450 , IRn = 1

and for n ≥ 10,

E(WnYn) =
686n2 − 9505(n + 1)Hn + 16941n + 1245(n + 1)(H2

n+1 − H(2)
n+1)

1575
,

where H(2)
n = ∑n

j=1
1
j2 .

Proof. Since XU1−1 and X′
n−U1

are conditionally independent (given U1), from (5),

PnXn = (PU1−1 + P′
n−U1

+ XU1−1 + X′
n−U1

)(XU1−1 + X′
n−U1

+ 1)

= PU1−1XU1−1 + PU1−1X′
n−U1

+ P′
n−U1

XU1−1 + P′
n−U1

X′
n−U1

+ X2
U1−1 + 2XU1−1X′

n−U1
+ X′2

n−U1
+ PU1−1 + P′

n−U1
+ XU1−1 + X′

n−U1
.
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Hence

E(PnXn) =
2
n

n

∑
u=1

E(Pu−1Xu−1) +
2
n

n

∑
u=1

E(Pu−1)E(Xn−u)

+
2
n

n

∑
u=1

E(Xu−1)E(Xn−u) +
2
n

n

∑
u=1

E(X2
u−1)

+
2
n

n

∑
u=1

E(Xu−1) +
2
n

n

∑
u=1

E(Pu−1).

If Ln := nE(PnXn), then

Ln − Ln−1 = 2E(Pn−1Xn−1) + g1(n),

where
g1(n) = 2(E(X2

n−1) + E(Xn−1) + E(Pn−1)).

Similar to the previous section,

nE(PnXn) = (n + 1)E(Pn−1Xn−1) + g1(n).

Then

E(PnXn) =
n + 1

n
E(Pn−1Xn−1) +

g1(n)
n

.

Since E(P1X1) = 0, by iteration,

E(PnXn) = (n + 1)
n

∑
j=1

g1(j)
j(j + 1)

.

From Thoerem 2.1, relations (1) and (2),

g1(n) =
1

450

(
121n2 + 660nHn−1 − 2104n + 2460

)
.

Thus

E(PnXn) =
n + 1
450

( n

∑
j=1

121j
j + 1

+
n

∑
j=1

660Hj−1

j + 1
−

n

∑
j=1

2104
j + 1

+
n

∑
j=1

2460
j(j + 1)

)
.

As in Theorem 2.1, we try to write the mathematical expectation E(PnXn) in terms of the
harmonic function. It is not difficult to show that

n

∑
j=1

j
j + 1

= n + 1 − Hn − 1/(n + 1),

n

∑
j=1

1
j + 1

= Hn + 1/(n + 1)− 1,

n

∑
j=1

1
j(j + 1)

= 1 − 1/(n + 1).
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Also, we have [4]:
n

∑
j=1

Hj

j + 1
=

1
2
(H2

n+1 − H(2)
n+1)

and thus
n

∑
j=1

Hj−1

j + 1
=

n

∑
j=1

Hj − 1
j

j + 1

=
1
2

(
H2

n+1 − H(2)
n+1

)
− 1 + 1/(n + 1).

Then

E(PnXn) =
1

450

(
121n2 − 2225(n + 1)Hn + 4146n + 330(n + 1)(H2

n+1 − H(2)
n+1)

)
.

If Rn occurs, then

g1(n) = 2E(X2
n−1) =

1
450

(121n2 − 544n + 900).

Then

E(PnXn) =
1

450

(
121n2 + 1686n − 665(n + 1)Hn

)
.

Also
Yn

D
= YU1−1 + Y′

n−U1
+ 1 − δn,3I{U1=1}, for n ≥ 1,

where δi,j is the Kronecker delta [9]. With the same calculations:

E(WnYn) = (n + 1)
n

∑
j=1

g2(j)
j(j + 1)

,

where

g2(n) =
1

1575

(
686n2 + 2490nHn−1 − 8819n + 9240

)
.

Now, the mean of WnYn is obtained in the same way.

Theorem 3.2. We have

V(Pn) = (n + 1)
n

∑
j=1

f1(j)
j(j + 1)

− (E(Pn))
2, for n ≥ 8,

where

f1(n) = 2E(X2
n−1) + 4E(Pn−1Xn−1),

and

V(Wn) = (n + 1)
n

∑
j=1

f2(j)
j(j + 1)

− (E(Wn))
2, for n ≥ 10,

where

f2(n) = 2E(Y2
n−1) + 4E(Wn−1Yn−1).
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Proof. From (7),

E(P2
n) = E(PU1−1 + P′

n−U1
+ XU1−1 + X′

n−U1
)2

= E(P2
U1−1) + E(P′2

n−U1
) + E(X2

U1−1) + E(X′2
n−U1

)

+ 2E(PU1−1P′
n−U1

) + 2E(PU1−1XU1−1) + 2E(PU1−1X′
n−U1

)

+ 2E(P′
n−U1

XU1−1) + 2E(P′
n−U1

X′
n−U1

) + 2E(XU1−1X′
n−U1

)

=
2
n

n

∑
u=1

E(P2
u−1) +

2
n

n

∑
u=1

E(X2
u−1) +

2
n

n

∑
u=1

E(Pu−1)E(Pn−u)

+
4
n

n

∑
u=1

E(Pu−1Xu−1) +
4
n

n

∑
u=1

E(Pu−1)E(Xn−u) +
2
n

n

∑
u=1

E(Xu−1)E(Xn−u).

If Bn := nE(P2
n), then

Bn − Bn−1 = 2E(P2
n−1) + f1(n),

where

f1(n) = 2E(X2
n−1) + 4E(Pn−1Xn−1)

=

{
605n2+1320n(H2

n−H(2)
n )−8900nHn+15072n−6300

450 , IRn = 0
605n2+5232n−2660nHn−2700

450 , IRn = 1
.

Hence

nE(P2
n) = (n + 1)E(P2

n−1) + f1(n).

Then

E(P2
n) =

n + 1
n

E(P2
n−1) +

f1(n)
n

.

By iteration,

E(P2
n) = (n + 1)

n

∑
j=1

f1(j)
j(j + 1)

.

From Theorem 3.1, for W2
n ,

f2(n) = 2E(Y2
n−1) + 4E(Wn−1Yn−1)

=
1

1575

(
3430n2 + 4980n(H2

n − H(2)
n )− 38020nHn + 59547n − 23850

)
, for n ≥ 10.

The second relation is obtained in the same way.
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Corollary 3.3. We have the following upper bounds in terms of harmonic functions [3, 10]:
n

∑
j=1

Hj

j + 1
≤ (n + 1)Hn,

n

∑
j=1

H2
j

j + 1
≤ n(n + 1)

2
H2

n +
n(n − 3)

4
,

n

∑
j=1

H(2)
j

j + 1
≤ n(n + 1)

2
H(2)

n .

Now, from Thoerem 3.2 and the order of harmonic numbers [6]:

V(Pn) = O(n2)

and
V(Wn) = O(n2).

4 Convergence in probability

Based on a standard argument of Chebychev’s inequality, we can show the following
theorem. The reason for using this approach is that the order of the functions appearing on
the right side of the Chebyshev inequality is known. In fact, if the order of the variance of
the variable under consideration is less than the order of the function in the denominator,
convergence in probability will be achieved [6, Page 136].

Theorem 4.1. As n → ∞,
15Pn

11n lnn
→ 1

and
15Wn

14n lnn
→ 1

in probability.

Proof. For ε > 0,

P
(∣∣∣∣ 15Pn

11n lnn
− 1

∣∣∣∣ ≥ ε

)
≤

E

(
15Pn

11n lnn − 1
)2

ε2

=
V(Pn)

ε2
(

11
15 n lnn

)2

=
O(n2)

ε2
(

11
15 n lnn

)2

→ 0, as n → ∞.
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The second limit is obtained in a similar way.

5 Conclusion

In this paper, we derived the mean and variance of path length of two types of protected
nodes in random binary search trees and showed related convergences in probability.
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