
Journal of Discrete Mathematics and Its Applications 10 (4) (2025) 375–392

Journal of Discrete Mathematics and Its Applications

Available Online at: http://jdma.sru.ac.ir

Research Paper

Gutman index of polyomino chains

Laila Azami, Nader Jafari-Rad*

Department of Mathematics, Faculty of Basic Sciences, Shahed University, Tehran, I. R. Iran.

Academic Editor: Ivan Gutman

Abstract. The Gutman index is a degree-distance-based topological descriptor of connected
graphs. In this paper, we derive explicit analytic expressions for its expected value in polyomino
chains built by sequentially attaching square tiles via one of two fixed local connection modes. This
expectation is expressed as a cubic polynomial in the number of tiles n. We then identify which attach-
ment patterns yield the extremal (maximum and minimum) values and compute the overall average
of the Gutman index across all polyomino chains of length n. These results enhance the topological
analysis of square-tiled networks with applications in chemical graph theory, polymer science, and
materials design.
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1 Introduction

Chemical graph theory models molecular structures as simple, finite, connected graphs,
with vertices representing atoms and edges representing chemical bonds [6, 9, 17]. Topologi-
cal indices–numerical invariants built from vertex degrees and shortest-path distances–serve
as key descriptors in quantitative structure–property/activity relationship studies (QSPR/
QSAR) of organic compounds [1, 2, 8, 13].
Let G = (V, E) be a simple connected graph. For a vertex v ∈ V, its degree, denoted by d(v), is
the number of vertices that are adjacent to v. For any pair of vertices u,v, the distance d(u,v)
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is the length of a shortest path between u and v. The Wiener index

W(G) = ∑
{u,v}⊆V(G)

d(u,v)

was introduced to correlate molecular topology with boiling points and remains one of
the most studied distance-based invariants [3, 5, 7, 14].
The Gutman index refines the Wiener index by weighting each distance by the product of the
incident vertex degrees:

Gut(G) = ∑
{u,v}⊆V(G)

d(u)d(v)d(u,v)

and has found widespread application in studies of polymeric and aromatic systems [4,
18, 22].
A polyomino system is a finite 2-connected plane graph in which each interior face is a unit
square, and two squares are adjacent if they share a side. A polyomino chain of length n is a
polyomino system whose squares H1, H2, . . . , Hn can be ordered so that the centers of adjacent
cells form a simple path C1,C2, . . . ,Cn. In such a chain, each square is adjacent to at most two
others. A square with exactly one neighbor is called terminal, with two neighbors and no
vertex of degree 2 is medial, and with two neighbors sharing a vertex of degree 2 is a kink. A
chain without any kinks is a linear chain, while one consisting only of terminals and kinks is a
zigzag chain. A maximal sequence of adjacent medials and terminals is called a segment of the
chain. Figure 1 depicts the geometric configurations of polyomino chains Ln and Zn,which
serve as the structural basis for our Gutman index calculations.

Figure 1. Polyomino chains of types Ln and Zn.
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In this paper, we focus on polyomino chains, where each new square attaches to one of
the two available edges of the previous cell with prescribed probabilities. We derive closed
form formulas for the expected Gutman index E(Gut(Gn)) of a polyomino chain Gn with n
cells. We identify the extremal attachment schemes that minimize or maximize this expecta-
tion and compute the average Gutman index over all non-isomorphic polyomino chains of a
given length.

2 Gutman index of polyomino chains

Let PCn−1 denote a polyomino chain with n − 1 squares. Adding one more square to
PCn−1 yields the chain PCn. Each new square can be attached to the previous square in one
of two ways:

• Linearly, in which case the connection link Ln equals 1.

• Non-linearly, in which case Ln = 2.

Each polyomino chain consists of several segments. The first segment extends from the first
square to the first kink, and each subsequent i-th segment spans from one kink to the next.
The last segment extends from the last kink–or from the first square if there is no kink–to the
final square. The i-th segment is denoted by si, as illustrated in the following figure.

Figure 2. A polyomino chain consisting of 10 cells and 5 segments.

Two different configurations for connecting the n-th square to the (n − 1)-th square are
illustrated in Figures 3 and 4. In the first configuration (Figure 3), we have Ln = 1, while in
the second configuration (Figure 4), we have Ln = 2.
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Figure 3. The n-th cell is added linearly to the polyomino chain pcn−1(Ln = 1 ).

or

Figure 4. The n-th cell is added to pcn−1 via a kinked attachment Ln = 2 .

By adding the n-th square, two new vertices v1,v2 with degree 2 are introduced, and the
degrees of the existing vertices u1,u2 are also affected. Since the Gutman index depends on
both vertex degrees and pairwise distances, the following set of vertices contributes to the
Gutman index of the updated chain:

A = {v1,v2,u1,u2}.

Note: In the construction of polyomino chains, the configuration of the (n − 1)-th square
depends on the value of Ln.

• If Ln = 1, the (n − 1)-th square adopts a medial configuration, meaning it is aligned
linearly with its adjacent squares, forming a straight segment.
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• If Ln = 2, the (n − 1)-th square takes a kink configuration, indicating a change in direc-
tion that introduces a bend in the chain.

Geometrically, a medial square lies collinearly with its predecessor and successor, while a
kink square forms a right angle with at least one of its neighbors, resulting in a corner-like
structure within the chain.

In the following, we give a recursive relation for the Gutman index of PCn based on PCn−1

(Theorem 1).

Theorem 2.1. Let PCn be a polyomino chain obtained by adding a new square to the end of PCn−1.
Then, the Gutman index of PCn can be computed recursively as follows:

Gut(Gn) = Gut(Gn−1) + 13 + 24n + 3ILn=2 + 3 ∑
u∈V(G)\A
v∈{u1,u2}

d(u)D(u,v),

where:

• ILn=2 is the indicator function, equal to 1 if Ln = 2, and 0 otherwise.

• d(u) denotes the degree of vertex u.

• D(u,v) is the distance between vertices u and v in the graph.

• The set A = {v1,v2,u1,u2} contains the vertices directly affected by the addition of the new
square.

Proof.

Gut(Gn)− Gut(Gn−1) = Gut(Gn)u,v⊆A + Gut(Gn)u/∈A
v∈A

− Gut(Gn−1) u/∈A
v∈{u1,u2}

= ∑
u,v⊆A

d(u)d(v)D(u,v) + ∑
v∈V(G)

u/∈A

d(u)d(v)D(u,v)

− ∑
u/∈A

v⊆{u1,u2}

d(u)d(v)D(u,v).

We now compute the above three summations. First note that

∑
u,v⊆A

d(u)d(v)D(u,v) = 49 + 9ILn=2.

We next compute ∑v∈V(G)
u/∈A

d(u)d(v)D(u,v). If Ln = 1, then

∑
v∈V(G)

u/∈A

d(u)d(v)D(u,v) = ∑
u/∈A

3d(u)D(u,u1) + ∑
u/∈A

3d(u)D(u,u2)

+ ∑
u/∈A

2d(u)D(u,v1) + ∑
u/∈A

2d(u)D(u,v2)
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= ∑
v∈{u1,u2}

u/∈A

5d(u)D(u,v) + 4 ∑
u/∈A

d(u).

If Ln = 2, then

∑
v∈V(G)

u/∈A

d(u)d(v)D(u,v) = ∑
u/∈A

4d(u)D(u,u1)

+ ∑
u/∈A

3d(u)D(u,u2) + ∑
u/∈A

2d(u)D(u,v1)

+ ∑
u/∈A

2d(u)D(u,v2) = ∑
u/∈A

6d(u)D(u,u1)

+ ∑
u/∈A

5d(u)D(u,u2) + 4 ∑
u/∈A

d(u).

Thus

∑
v∈V(G)

u/∈A

d(u)d(v)D(u,v) = ∑
v∈{u1,u2}

u/∈A

5d(u)D(u,v) +

[
∑

u/∈A
d(u)D(u,u1)

]
ILn=2

+ 4 ∑
u/∈A

d(u) ∑
u/∈A

d(u) = 6n − 8 − ILn=2

= ∑
v∈{u1,u2}

u/∈A

5d(u)D(u,v) +

[
∑

u/∈A
d(u)D(u,u1)

]
ILn=2

+ 4(6n − 8 − ILn=2) = ∑
v∈{u1,u2}

u/∈A

5d(u)D(u,v)

+

[
∑

u/∈A
d(u)D(u,u1)

]
ILn=2 + 24n − 32 − 4ILn=2.

Now we compute

∑
u/∈A

v⊆{u1,u2}

d(u)d(v)D(u,v).

If Ln = 1, then

∑
v∈{u1,u2}

u/∈A

d(u)d(v)D(u,v) = ∑
u/∈A

2d(u)D(u,u1) + ∑
u/∈A

2d(u)D(u,u2).

If Ln = 2, then

∑
v∈{u1,u2}

u/∈A

d(u)d(v)D(u,v) = ∑
u/∈A

3d(u)D(u,u1) + ∑
u/∈A

2d(u)D(u,u2).
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Thus

∑
u/∈A

v⊆{u1,u2}

d(u)d(v)D(u,v) = ∑
v∈{u1,u2}

u/∈A

2d(u)D(u,v) +

[
∑

u/∈A
d(u)D(u,u1)

]
ILn=2.

Then

Gut(Gn)− Gut(Gn−1) = 49 + 9ILn=2 + ∑
v∈{u1,u2}

u/∈A

5d(u)D(u,v)

+

[
∑

u/∈A
d(u)D(u,u1)

]
ILn=2 + 24n − 32 − 4ILn=2

−

 ∑
v∈{u1,u2}

u/∈A

2d(u)D(u,v) +

[
∑

u/∈A
d(u)D(u,u1)

]
ILn=2


= 13 + 24n + 3ILn=2 + 3 ∑

v∈{u1,u2}
u/∈A

d(u)D(u,v).

We next introduce some definitions and Configurations.

Definition 2.2 (Local Configuration Impact on Gutman Index). In the polyomino chains, the
summation

∑
v∈{u1,u2}

u/∈A

d(u)D(u,v)

is influenced by the local configuration of the square whose vertices are involved in the computation,
along with its two adjacent squares. Specifically, the contribution of the vertices belonging to the w-th
square depends on which of the following eight configurations the triple (w − 1,w,w + 1) falls into:

1. medial – medial – medial

Figure 5. The triple (w − 1,w,w + 1) is of type medial–medial–medial.

2. medial – kink – medial
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Figure 6. The triple (w − 1,w,w + 1) is of type medial – kink – medial.

3. medial –medial–kink

Figure 7. The triple (w − 1,w,w + 1) is of type medial–medial–kink.

4. kink – medial –medial

Figure 8. The triple (w − 1,w,w + 1) is of type kink–medial–medial.

5. kink – kink – medial
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Figure 9. The triple (w − 1,w,w + 1) is of type kink–kink–medial.

6. medial – kink – kink

Figure 10. The triple (w − 1,w,w + 1) is of type medial–kink–kink.

7. kink – medial – kink

Figure 11. The triple (w − 1,w,w + 1) is of type kink–medial–kink.

8. kink – kink – kink

383



Azami et al. / Journal of Discrete Mathematics and Its Applications 10 (2025) 375–392

Figure 12. The triple (w − 1,w,w + 1) is of type kink–kink–kink.

These configurations, illustrated in Figure 13, play a crucial role in determining the local structural
impact on the Gutman index.

Figure 13. The triple (w − 1,w,w + 1) is of type kink–medial–medial.

Theorem 2.3. In a polyomino chain of length n, consider three consecutive medial squares. Let w
be the index of the central square, and let B be the set of its vertices. For each ordered pair (u,v)
satisfying

u ∈ B and v ∈ {u1,u2}.

Then the contribution from square w is

1
2 ∑

v∈{u1,u2}
u∈B

d(u)D(u,v) = 12(n − w)− 6Iw∈st ,

where, st denotes the final segment of the chain,

Iw∈st =

{
1 if w ∈ st,

0 otherwise.

and the factor 1
2 accounts for each vertex being shared by two adjacent squares.
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Proof. According to Figures 6 and 7, we distinguish two cases depending on whether the
central square w belongs to the final segment st.

Case 1: w ∈ st.
From Figure 6, we compute

1
2 ∑

v∈{u1,u2}
u∈B

d(u)D(u,v) =
3
2
[4(n − w) + 2(n − w + 1) + 2(n − w − 1)] = 12(n − w).

Figure 14. The configutartion of Case 1.

Case 2: w /∈ st.
From Figure 7, one similarly obtains

1
2 ∑

v∈{u1,u2}
u∈B

d(u)D(u,v) =
3
2
(n − w − 2) +

9
2
(n − w − 1) +

9
2
(n − w) +

3
2
(n − w + 1)

= 12(n − w)− 6.

Figure 15. The configutartion of Case 2.

Combining both cases yields the unified formula:

1
2 ∑

v∈{u1,u2}
u∈B

d(u)D(u,v) = 12(n − w)− 6Iw∈st .

Theorem 2.4. In a polyomino chain of length n, consider three consecutive squares that form a kink
(i.e., the central square turns 90◦). Let w be the index of the central square, and let B be the set of its
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vertices. For each ordered pair (u,v) with

u ∈ B and v ∈ {u1,u2},

define

• d(u) as the degree of vertex u divided by the number of squares sharing u,

• D(u,v) as the distance between u and v.

Then the total contribution for square w is

∑
v∈{u1,u2}

u∈B

d(u)D(u,v) = 12(n − w)− 6.

Proof. From the configuration shown below, the eight contributions sum as follows:

Figure 16. The configutartion.

∑
v∈{u1,u2}

u/∈A

d(u)D(u,v) =
4
3
(n − w) +

4
3
(n − w + 1) +

4
3
(n − w − 1) +

4
3
(n − w − 1)

+
4
3
(n − w) +

4
3
(n − w − 2) + 2(n − w − 1) + 2(n − w)

= 12(n − w)− 6.

Corollary 2.5 (Gutman Index of Linear Polyomino Chains). Let Gn be a linear polyomino chain
of n squares. For n ≥ 4, its Gutman index satisfies the recurrence

Gut(Gn) = Gut(Gn−1) + 66n + 1 + 36
n−2

∑
w=2

(n − w), n ≥ 4
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Evaluating the summation and imposing the base value Gut(G3) = 328 yield the closed-form expres-
sion

Gut(Gn) = 6n3 + 15n2 + 10n + 1.

Proof. By Theorems 1 and 2, every square except the first and the last lies in the configuration
covered by Theorem 2. Hence for n ≥ 4 one obtains

Gut(Gn)− Gut(Gn−1) = 13 + 24n + 3ILn=2 + 3 ∑
v∈{u1,u2}

u/∈A

d(u)D(u,v). (*)

Here In = 0 since the chain is linear, and has length at least 4. Moreover, for the two vertices
of degree 2 one checks directly that

∑
v∈{u1,u2}

u/∈A

d(u)D(u,v) = 14n − 4.

Substituting into (*) gives

Gut(Gn) = Gut(Gn−1) + 66n + 1 + 36
n−2

∑
w=2

(n − w), n ≥ 4.

We proceed by extending the recurrence relation and simplifying it as follows.
1. Sum simplification:

n−2

∑
w=2

(n − w) =
n−2

∑
k=2

k =
(n − 2)(n − 1)

2
− 1.

2. Plug into the recurrence:

Gut(Gn) = Gut(Gn−1) + 66n + 1 + 18(n − 2)(n − 1)− 36.

3. Solve the first-order recurrence:

Gut(Gn) = Gut(Gn−1) + 18n2 + 12n + 1, Gut(G3) = 328 ⇒

Gut(Gn) = 6n3 + 15n2 + 10n + 1.

Corollary 2.6 (Gutman Index of Zigzag Polyomino Chains). Let Gn be a zigzag polyomino chain
consisting of n squares, where n ≥ 6. Then the Gutman index of Gn is given by the recurrence:

Gut(Gn) = Gut(Gn−1) + 24n + 16 + 3

[
n−3

∑
w=3

(12(n − w)− 6) + 26n − 23

]
.

Moreover, the closed-form expression is:

Gut(Gn) = Gut(G5) + 6n3 + 3n2 − 89n + 11255.
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Proof. In a zigzag polyomino chain, all internal squares (i.e., squares with indices w= 3, . . . ,n−
1) form kink-kink-kink configurations. Let B denote the set of vertices belonging to square
w. According to Theorem 3, the contribution of each such square w to the Gutman index is:

∑
v∈{u1,u2}

u∈B

d(u)D(u,v) = 12(n − w)− 6.

This expression accounts for the normalized degrees of vertices (i.e., degrees divided by the
number of squares sharing each vertex) and their distances to the reference vertices u1 and
u2.

Gut(Gn)− Gut(Gn−1) = 16 + 24n + 3
n−1

∑
w=3

d(u)D(u,v)

Gut(Gn) = Gut(Gn−1) + 16 + 24n + 3
n−1

∑
w=3

(12(n − w)− 6)

= Gut(Gn−1) + 16 + 24n + 3

(
n−1

∑
w=3

(12(n − w)− 6) + 26n − 23

)
.

We simplify the summation:

Gut(Gn) = Gut(Gn−1) + 24n + 16 + 3 [6n(n − 5)− 6 + 26n − 23] .

Gut(Gn) = Gut(G5) +
n

∑
k=6

[
18k2 − 12k − 71

]
.

Now, we telescope this recurrence from the base case Gut(G5):

Gut(Gn) = Gut(G5) + 6n3 + 3n2 − 89n + 11255.

Theorem 2.7 (Extremal Bounds for the Gutman Index). Let Gn be any polyomino chain with
n ≥ 3 squares. Denote by Ln the linear chain (no kinks) and by Zn the zigzag chain (every internal
square is a kink) of length n. Then

Gut(Zn) ≤ Gut(Gn) ≤ Gut(Ln)

with equality on the right if and only if Gn ∼= Ln, and equality on the left if and only if Gn ∼= Zn.

Proof. Preliminaries from the paper
Attachment model and notation: Starting from, attach the n-th square either linearly (Ln = 1)
or as a kink (Ln = 2). The four locally affected vertices are

A = {v1,v2,u1,u2}.
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Incremental formula (Theorem 1):

Gut(Gn)− Gut(Gn−1) = 13 + 24n + 3I(Ln=2) + 3 ∑
v∈{u1,u2}

∑
u∈V(Gn)\A

d(u)D(u,v). (1)

Local triple and square-vertex set: For an internal index w ∈ {2, . . . ,n − 2}, let Bw be the set
of the four vertices of square w, and consider its triple (w − 1,w,w + 1).
Local contribution bounds (from Theorems 2 and 3)
For fixed step n and an internal square w, define the local contribution

Cw(Gn−1,n) := ∑
v∈{u1,u2}

∑
u∈Bw

d(u)D(u,v).

Theorems 2 and 3 imply the sharp two-sided bound

12(n − w)− 16 ≤ Cw(Gn−1,n) ≤ 12(n − w) (2)

with equality cases:

• Upper bound Cw = 12(n − w) holds exactly when the triple (w − 1,w,w + 1) is medial-
medial-medial and the middle square w lies in the final segment St.

• Lower bound Cw = 12(n − w)− 6 holds whenever the triple is kinked (as in a zigzag),
and also for medial-medial-medial triples when w /∈ St.

Equivalently, introduce the binary defect

δw(Gn−1) :=

{
0, if (w − 1,w,w + 1) is MMM and w ∈ St,

1, otherwise

so that
Cw(Gn−1,n) = 12(n − w)− 6δw(Gn−1). (3)

Summing over internal squares,

Sn(Gn−1) :=
n−2

∑
w=2

Cw(Gn−1,n) =
n−2

∑
w=2

12(n − w)− 6
n−2

∑
w=2

δw(Gn−1). (4)

Two extremal shapes are immediate:

• Linear chain Ln−1: all internal triples are MMM within St, hence δw(Ln−1) = 0 for all w,
so

Sn(Ln−1) =
n−2

∑
w=2

12(n − w).

• Zigzag chain Zn−1: all internal triples are kinked, hence δw(Zn−1) = 1 for all w, so

Sn(Zn−1) =
n−2

∑
w=2

(12(n − w)− 6) = Sn(Ln−1)− 6(n − 3).
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Therefore, for any Gn−1,

Sn(Zn−1) ≤ Sn(Gn−1) ≤ Sn(Ln−1). (5)

with equality if Gn−1 = Zn−1 or Ln−1, respectively.
Stepwise extremality of the increment
From (1) and (4),

∆n(G) = Gut(Gn)− Gut(Gn−1) = 13 + 24n + 3I(Ln=2) + 3Sn(Gn−1). (6)

Using (5),
∆n(Z) ≤ ∆n(G) ≤ ∆n(L), (7)

where the stepwise equalities hold precisely when Gn−1 is zigzag/linear and the attachment
preserves that shape at step n (i.e., Ln = 2 for zigzag, Ln = 1 for linear). Any deviation forces
at least one strict inequality in (7).

A quantified gap follows from the explicit sums above:

∆n(L)− ∆n(Z) = 3(Sn(Ln−1)− Sn(Zn−1))− 3 = 18(n − 3)− 3 > 0 (n ≥ 4). (8)

Telescoping and equality conditions
Telescoping (for any fixed base G3):

Gut(Gn) = Gut(G3) +
n

∑
k=4

∆k(G).

Summing (7) from k = 4 to n yields

Gut(Zn) ≤ Gut(Gn) ≤ Gut(Ln).

• Upper equality holds if ∆n(G) = ∆n(L) for all k, i.e., if the chain is linear at every step:
Gn ∼= Ln.

• Lower equality holds if ∆n(G) = ∆n(Z) for all k, i.e., if the chain is zigzag at every step:
Gn ∼= Zn.

Conclusion

This paper uses the linear-kink attachment model and a finely separated incremental de-
scription of the Gutman index change to build a local-to-global framework that reduces eight
local configurations to two canonical contributions distinguished by a fixed ”defect.” This
structure directly yields cubic closed-form expressions in n for the linear chain Ln and the
zigzag chain Zn and proves them uniquely extremal. The argument hinges on stepwise ex-
tremality of each index increment followed by a telescoping sum. Finally, the segment-based
bookkeeping together with the defect decomposition provides an efficient template for con-
strained, weighted, and probabilistic extensions.
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Open Problems

1. Expectation in a biased random attachment model In the sequential growth model
where each new square attaches linearly with probability 1 − p and as a kink with
probability p, derive an exact closed-form expression for E[Gut(Gn)] as a cubic polyno-
mial in n whose coefficients depend explicitly on p. Analyze how the ”segment restart”
triggered by a kink influences the local defect term in the expectation.

2. Variance, higher moments, and limit laws Compute Var(Gut(Gn)) and, more gener-
ally, obtain formulas for its second and third moments under the same biased model.
Investigate whether a central-limit theorem holds for the normalized Gutman index as
n → ∞ for fixed p ∈ (0,1).

3. Extension to other tilings Adapt the local-to-global and defect-decomposition approach
to polyhex (hexagonal) and polyiamond (triangular) chains. Determine whether a fixed
local penalty still governs the transition between maximal and minimal configurations,
and derive the corresponding closed-form laws and extremal shapes.
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