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Abstract. This paper presents a classification of 12 out of 15 known families of tricyclic graphs
based on their Szeged complexity. It is shown that only two of these families contain graphs with
Szeged complexity equal to one. Building on previous structural analyses of unicyclic and bicyclic
graphs, this study extends the classification framework to include a substantial portion of tricyclic
configurations. The results contribute to a deeper understanding of graph complexity and lay the
groundwork for further exploration of cyclic graph structures.
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1 Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G).
The distance between any two vertices x,y ∈ V(G) is denoted by d(x,y). Based on this

notation, the total distances of vertex x ∈ V(G) is defined as

wG(x) = ∑
x ̸=y∈V(G)

d(x,y).
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The Wiener complexity of a graph G, as introduced in [3] (see also [1, 5, 11, 14]), is given by

CW(G) = |{wG(x) : x ∈ V(G)}| .

Given an edge e = xy ∈ E(G), define the following vertex subsets:

Nx(e) = {z ∈ V(G) : d(x,z)<d(y,z)} ,

Ny(e) = {z ∈ V(G) : d(y,z)<d(x,z)} ,

and
N0(e) = {z ∈ V(G) : d(y,z) = d(x,z)} .

Let nx(e) = |Nx(e)| and ny(e) =
∣∣Ny(e)

∣∣. The Szeged contribution of the edge e, denoted by
Sz(e), is defined as the product nx(e).ny(e). Summing these contributions over all edges in G
yields the Szeged index Sz(G) of the graph, as introduced in [10]. The Szeged complexity of
G, as discussed in [2, 4, 7–9], is defined as

CSz(G) = |{Sz(e) : e ∈ E(G)}| .

Studying complexity indices is beneficial as they provide insights into structural character-
istics of graphs and facilitate graph classification. In [7–9] graphs with small Sz-complexity
are classified and their W-complexity is calculated.

A graph G is considered µ-cyclic if it is connected and satisfied the relation µ = |E(G)| −
|V(G)| + 1. When µ = 1, 2, or 3, the graph is referred to as unicyclic, bicyclic, or tricyclic,
respectively. These classes of graphs play a fundamental role in structural graph theory and
have applications in chemical graph and network design. In [6, 10, 12, 13] µ-cyclic graphs
(µ = 1, 2, or 3) with extremal Szeged index have been determined.

This research builds upon the foundational results reported in [7, 8], where some µ-cyclic
graphs with Sz-complexity equal to one were analyzed and classified. In continuation of that
work, we extend the classification to tricyclic graphs and classify 12 out of 15 families with
Sz-complexity one.

2 Related work and background results

In this section, we review relevant results from previous studies and present preliminary
observations that will be used in the classification of tricyclic graphs.

Theorem 2.1. [7] Let G be a graph with Sz-complexity equal to one. Then G does not contain a
non-leaf cut edge.

Theorem 2.2. [7] Let G be a unicyclic graph. Then CSz(G) = 1 if and only if G is a cycle.

A µ-cyclic graph of type I is formed by joining µ cycles at a common vertex, possibly
with trees attached to some cycle vertices. The Dutch windmill graph D(µ,r) exemplifies
this structure, comprising µ copies of the cycle Cr intersecting at a single shared vertex.
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Figure 1. The graph Θ(l1, l2, ..., li).

Theorem 2.3. [8] Suppose G is a µ-cyclic graph of type I. Then CSz(G) = 1 if and only if G is
isomorphic to D(µ,r), for even integer r.

A graph is referred to as a Θ-graph if it consists of i ≥ 3 internally disjoint paths with
length li connecting two vertices s and t, which is denoted by Θ(l1, l2, ..., li) as illustrated in
Figure 1. The order of the lengths l1, l2, ..., li in this notation is not important. To make things
easier, we often assume the lengths are sorted so that 1 ≤ l1 ≤ l2 ≤ · · · ≤ li.

Let a µ-cyclic graph of type II denote a graph derived from a Θ-graph by connecting trees
to some vertices.

Theorem 2.4. [8] Let G ∼= Θ(l1, l2, ..., li) be a bipartite graph. Then CSz(G) = 1 if and only if
l1 = l2 = · · · = li−1 = 2 and li is an arbitrary even integer.

Theorem 2.5. [8] Let G be a µ-cyclic graph of type II with CSz(G) = 1. Then G is leafless.

3 Classification of tricyclic graphs

This part of the study outlines the classification of tricyclic graphs with Sz-complexity
one, focusing on 12 distinct structural families identified through our analysis as depicted in
Figure 2.

Corollary 3.1. Consider a tricyclic graph G based on one of the structures (2-8) in Figure 2. Then
CSz(G) ̸= 1.

Proof. According to Theorem 2.1, it is obvious.

Theorem 2.3 leads us to the following result.

Corollary 3.2. Let G be a tricyclic graph based on the structure of (12) in Figure 2. Then CSz(G) = 1
if and only if G is isomorphic to D(3,r) that r is even.

Consider the graph Θ(l1, l2, ..., li) on n vertices, which is non-bipartite, and suppose that
k of lengths li are even, where 1 ≤ k < i. Let e and f denote the middle edges (see Figure 3
for an example) along an odd-length and an even-length path joining s and t, respectively, as
illustrated in Figure 4. The Szeged contributions of these edges are given by:

Sz(e) =
(

n−k
2

)2
and Sz( f ) =

(
n−k

2 + 1 − (i − k)
)(

n−k
2 + (k − 1)

)
.
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Figure 2. Twelve bases of tricyclic graphs.

Figure 3. The middle edges in P6 and P7 are colored blue.

Theorem 3.3. Assume G is a tricyclic graph based on the structure (1) in Figure 2. Then CSz(G) = 1
if and only if G ∼= Θ(l1, ..., l4) that l1 = l2 = l3 = 2 and l4 is an arbitrary even integer.

Proof. Given that CSz(G) = 1, Theorem 2.5 implies that G ∼= Θ(l1, ..., l4). We now consider the
case where G is non-bipartite. Based on the previously computed Szeged contributions of
the middle edges along the st-paths, we demonstrate that CSz(G) ̸= 1. The analysis proceeds
through the following three cases:

Case 1. One of the lengths li is odd. Then

Sz(e) =
(n−3

2

)2
and Sz( f ) =

(
n+1

2

)(n−3
2

)
.

Case 2. Two of the lengths li are odd. Then

Sz(e) =
(n−2

2

)2
and Sz( f ) =

(n
2

)(n−4
2

)
.

Case 3. Three of the lengths li are odd. Hence

Sz(e) =
(

n−1
2

)2
and Sz( f ) =

(
n−1

2

)(n−5
2

)
.

In each case, it is evident that Sz(e) ̸= Sz( f ), and therefore CSz(G) ̸= 1.
If G is bipartite, then the result follows directly from Theorem 2.4.
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Figure 4. The vertices in Nu and Nx are colored red, those in Nv and Ny are colored blue, and the
vertices belonging to N0 (e) and N0 ( f ) are colored black.

We proceed to show that for tricyclic graphs based on structures (9), (10), or (11) in Figure
2, there exists no graph with Sz-complexity equal to one.

Now, let G [Cr] denote the graph obtained by attaching a cycle Cr to a vertex of G.

Theorem 3.4. [8] Let G be a graph and consider the construction G [Cr], where r is odd. Then
CSz(G[Cr]) ̸= 1.

Theorem 3.5. Let H be the graph formed by extending G [Cr] through the attachment of trees to some
of its vertices. If CSz(H) = 1, then H is leafless.

Proof. Assume |V(H)| = n and e is a leaf of H. Then Sz(e) = n − 1. Consider f ∈ E(Cr). If
r is even, then clearly Sz( f ) ̸= n − 1. Also, if r is odd, then similar to the proof of Theorem
2.2, it is not possible for all edges belonging to the cycle Cr to simultaneously have a Szeged
contribution equal to n − 1 that is a contradiction. Hence H is leafless.

From Theorem 3.5, we obtain the following result.

Corollary 3.6. Let G be a tricyclic graph based on structures (9), (10), or (11) in Figure 2. If
CSz(G) = 1, then G is leafless.

Theorem 3.7. Let G be a tricyclic graph based on structure (11) in Figure 2. Then CSz(G) ̸= 1.

Proof. If G contains a leaf, then by Corollary 3.6 CSz(G) ̸= 1. Hence consider G is leafless.
Let G consists of Cp, Cq, and Cr as illustrated in Figure 5 and x,y ∈ V(G) are cut vertices. If
p or r is odd, then by Theorem 3.4 CSz(G) ̸= 1. Thus p and r are even. Assume e ∈ E(Cp)

and f ∈ E(Cr). Then Sz(e) =
( p

2

)(
|V(G)| − p

2

)
and Sz( f ) =

( r
2

)(
|V(G)| − r

2

)
. It follows that

p = r. Now we consider two cases:
Case 1. Suppose that q is odd. Then Cq consists of two xy-paths, one of odd length and

the other even. Suppose g lies at the center of the odd xy-path (see Figure 6) and h ∈ E(Cq)
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Figure 5. The graph G composed of three cycles Cp, Cq, and Cr, with cut vertices x and y.

Figure 6. The middle edge g of the xy-path.

such that x ∈ N0(h). Therefore Sz(g) =
(

q−1
2 + p − 1

)2
and Sz(h) =

(
q−1

2 + p − 1
)(

q−1
2

)
.

Hence, we infer that Sz(g) ̸= Sz(h).
Case 2. Assume q is even. Thus Cq consists of two even (or odd) xy-paths. Let g ∈ E(Cq) be

a middle edge of an xy-path. Then Sz(g) =
( q

2 + p − 1
)2. Hence Sz(g) ̸= Sz(e) that e ∈ E(Cp).

Therefore CSz(G) ̸= 1.

Theorem 3.8. Suppose G is a tricyclic graph based on structures (9) or (10) in Figure 2. Then
CSz(G) ̸= 1.

Proof. If G has a leaf, then by Corollary 3.6 CSz(G) ̸= 1. Now, assume G is leafless and con-
structed from Θ(l1, l2, l3) that Cr with a cut vertex connected to it. We analyze the following
four cases:

Case 1. One of the lengths li is odd. Consider Figure 7. In analogy with the proof of
Theorem 3.3, we analyze the Szeged contributions of the middle edges e and f , contingent
upon the vertex where the cycle Cr is connected:

(i) Cr is connected to w. Thus Sz(e) =
(n−2

2

)2
and Sz( f ) =

(n−2
2

)(n
2 + r − 1

)
.

(ii) Cr is connected to y. Then Sz(e) =
(n−2

2

)2
and Sz( f ) =

(n−2
2 + r − 1

)(n
2

)
.

(iii) Cr is connected to v. It follows that

Sz(e) =
(n−2

2

)(n−2
2 + r − 1

)
and Sz( f ) =

(n−2
2

)(n
2

)
.

(iv) Cr is connected to the blue vertices except for v in Figure 7 (1). Hence

Sz(e) =
(n−2

2

)(n−2
2 + r − 1

)
and Sz( f ) =

(n
2

)(n−2
2 + r − 1

)
.

(v) Cr is connected to the red vertices in Figure 7 (1). Consequently,

Sz(e) =
(n−2

2

)(n−2
2 + r − 1

)
and Sz( f ) =

(n
2 + r − 1

)(n−2
2

)
.

Case 2. Two of the lengths li are odd. Refer to Figure 8. Similar to case 1, we examine the
following items:
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Figure 7. Vertex colors correspond to the same partitioning as in Figure 4.

Figure 8. Colors are assigned as previously described.

(i) Cr is connected to v or w. Then Sz(e) =
(

n−1
2

)(
n−1

2 + r − 1
)

and Sz( f ) = (n−1
2 )(n−3

2 ).

(ii) Cr is connected to y. Therefore Sz(e) =
(

n−1
2

)2
and Sz( f ) =

(n−3
2 + r − 1

)(n−1
2

)
.

(iii) Cr is connected to the blue vertices except for v and w in Figure 8 (1). It follows that

Sz(e) =
(

n−1
2

)(
n−1

2 + r − 1
)

and Sz( f ) =
(

n−1
2

)(n−3
2 + r − 1

)
.

(iv) Cr is connected to the red vertices in Figure 8 (1). Then we infer that

Sz(e) =
(

n−1
2

)(
n−1

2 + r − 1
)

and Sz( f ) =
(

n−1
2 + r − 1

)(n−3
2

)
.

Case 3. None of the lengths li is odd. Consider Figure 9. Similar to the previous cases, we
investigate the following items:

(i) Cr is connected to the red vertices except for m and y in Figure 9 (1). Consequently,

Sz(e) =
(

n+1
2 + r − 1

)(
n−1

2

)
and Sz( f ) =

(
n+1

2

)(
n−1

2 + r − 1
)

.

(ii) Cr is connected to the blue vertices except for v in Figure 9 (1). Thus

Sz(e) =
(

n+1
2

)(
n−1

2 + r − 1
)

and Sz( f ) =
(

n+1
2 + r − 1

)(
n−1

2

)
.

(iii) Cr is connected to y. Then

Sz(e) =
(

n+1
2 + r − 1

)(
n−1

2

)
and Sz(g) =

(
n−1

2 + r − 1
)(

n+1
2

)
.
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(iv) Cr is connected to v. Hence

Sz(e) =
(

n+1
2

)(
n−1

2 + r − 1
)

and Sz(g) =
(

n+1
2 + r − 1

)(
n−1

2

)
.

(v) Cr is connected to m. It follows that

Sz(e) =
(

n+1
2 + r − 1

)(
n−1

2

)
and Sz(h) =

(
n−1

2 + r − 1
)(

n+1
2

)
.

Figure 9. Four middle edges.

Case 4. Three of the lengths li are odd. Based on the argument presented in the proof of
Theorem 2.4, if e = uv is a middle edge of an st-path in G, then |nu − nv| = r − 1. In contrast,
for an edge f = xy adjacent to s along the longest path connecting s and t, we deduce that∣∣nx − ny

∣∣ ≥ r + 1.
In all the above cases, two edges with different Szeged contributions are identified, indi-

cating that CSz(G) ̸= 1.

4 Conclusions

In this study, twelve distinct families of tricyclic graphs were systematically classified
according to their Sz-complexity. Among these, only two families were found to contain
graphs with Sz-complexity one. Furthermore, earlier investigations have examined unicyclic
and bicyclic graphs through the lens of the vector (CSz,CW) = (1,CW). By extending this clas-
sification framework to include three additional tricyclic families, a complete categorization
of all tricyclic graphs with respect to this vector becomes attainable.
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