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Abstract. This paper presents a classification of 12 out of 15 known families of tricyclic graphs
based on their Szeged complexity. It is shown that only two of these families contain graphs with
Szeged complexity equal to one. Building on previous structural analyses of unicyclic and bicyclic
graphs, this study extends the classification framework to include a substantial portion of tricyclic
configurations. The results contribute to a deeper understanding of graph complexity and lay the
groundwork for further exploration of cyclic graph structures.
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1 Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G).
The distance between any two vertices x,y € V(G) is denoted by d(x,y). Based on this
notation, the total distances of vertex x € V(G) is defined as

we(x) = Z d(x,y).
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The Wiener complexity of a graph G, as introduced in [3] (see also [1,5,11,/14]), is given by
Cw(G) = {we(x) : x€ V(G)}.
Given an edge e = xy € E(G), define the following vertex subsets:
Ny(e) ={z € V(G) :d(x,z)<d(y,z)},
Ny(e) ={z€ V(G) : d(y,z)<d(x,z)},

and
No(e) ={z€ V(G) :d(y,z) =d(x,z)}.

Let nx(e) = |[Nx(e)| and ny(e) = [Ny (e)|. The Szeged contribution of the edge ¢, denoted by
Sz(e), is defined as the product n,(e).n, (). Summing these contributions over all edges in G
yields the Szeged index Sz(G) of the graph, as introduced in [10]. The Szeged complexity of
G, as discussed in [2,4},7-9], is defined as

Cs(G) = |{Sz(e) : e € E(G)}].

Studying complexity indices is beneficial as they provide insights into structural character-
istics of graphs and facilitate graph classification. In [7-9] graphs with small Sz-complexity
are classified and their W-complexity is calculated.

A graph G is considered p-cyclic if it is connected and satisfied the relation y = |E(G)| —
|V(G)| +1. When u =1, 2, or 3, the graph is referred to as unicyclic, bicyclic, or tricyclic,
respectively. These classes of graphs play a fundamental role in structural graph theory and
have applications in chemical graph and network design. In [6,(10,12,[13] p-cyclic graphs
(4 =1, 2, or 3) with extremal Szeged index have been determined.

This research builds upon the foundational results reported in [7,§8], where some p-cyclic
graphs with Sz-complexity equal to one were analyzed and classified. In continuation of that
work, we extend the classification to tricyclic graphs and classify 12 out of 15 families with
Sz-complexity one.

2 Related work and background results

In this section, we review relevant results from previous studies and present preliminary
observations that will be used in the classification of tricyclic graphs.

Theorem 2.1. [7] Let G be a graph with Sz-complexity equal to one. Then G does not contain a
non-leaf cut edge.

Theorem 2.2. [7] Let G be a unicyclic graph. Then Cs,(G) = 1 if and only if G is a cycle.

A p-cyclic graph of type I is formed by joining p cycles at a common vertex, possibly
with trees attached to some cycle vertices. The Dutch windmill graph D(u,r) exemplifies
this structure, comprising y copies of the cycle C, intersecting at a single shared vertex.
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Figure 1. The graph ©(l4,12, ..., ;).

Theorem 2.3. [8] Suppose G is a u-cyclic graph of type I. Then Cs,(G) =1 if and only if G is
isomorphic to D(y,r), for even integer r.

A graph is referred to as a ®-graph if it consists of i > 3 internally disjoint paths with
length /; connecting two vertices s and ¢, which is denoted by ©(ly,1y,...,1;) as illustrated in
Figure The order of the lengths [, I, ..., [; in this notation is not important. To make things
easier, we often assume the lengths are sorted so that 1 <[y <[, <... <[,

Let a u-cyclic graph of type II denote a graph derived from a ®-graph by connecting trees
to some vertices.

Theorem 2.4. [8] Let G = O(ly,1p,...,1;) be a bipartite graph. Then Cg,(G) =1 if and only if
Iy =l =---=1;_1 =2and l; is an arbitrary even integer.

Theorem 2.5. [8] Let G be a u-cyclic graph of type Il with Cs,(G) = 1. Then G is leafless.

3 Classification of tricyclic graphs

This part of the study outlines the classification of tricyclic graphs with Sz-complexity
one, focusing on 12 distinct structural families identified through our analysis as depicted in

Figure

Corollary 3.1. Consider a tricyclic graph G based on one of the structures (2-8) in Figure[2l Then
CSZ(G) 7"é L

Proof. According to Theorem 2.7} it is obvious. O
Theorem [2.3|leads us to the following result.

Corollary 3.2. Let G be a tricyclic graph based on the structure of (12) in Figure[2} Then Cs,(G) =1
if and only if G is isomorphic to D(3,r) that r is even.

Consider the graph ©(Iy,1,...,I;) on n vertices, which is non-bipartite, and suppose that
k of lengths I; are even, where 1 <k < i. Let e and f denote the middle edges (see Figure
for an example) along an odd-length and an even-length path joining s and ¢, respectively, as
illustrated in Figure @ The Szeged contributions of these edges are given by:

s2(e) = (77¥) and sz(F) = ("7t +1- (- 0) ("5 + (k- D).
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Figure 2. Twelve bases of tricyclic graphs.
*r—1_—10—0—0—0
*—r—0—0—0—0—0

Figure 3. The middle edges in Ps and P; are colored blue.

Theorem 3.3. Assume G is a tricyclic graph based on the structure (1) in Figure[2} Then Cs,(G) =1
ifand only if G = O(14, ..., 14) that I = I, = I3 = 2 and 14 is an arbitrary even integer.

Proof. Given that Cs,(G) = 1, Theorem 2.5 implies that G = ©(1y, ...,l4). We now consider the
case where G is non-bipartite. Based on the previously computed Szeged contributions of
the middle edges along the st-paths, we demonstrate that Cs,(G) # 1. The analysis proceeds
through the following three cases:

Case 1. One of the lengths /; is odd. Then

sz(e) = (%52)" and S2(f) = (231) (252).
Case 2. Two of the lengths /; are odd. Then
sz(e) = (132)" and 52(f) = (3) (%5%)-
Case 3. Three of the lengths /; are odd. Hence
s2(e) = (%2)” and s2(f) = (752) (52).

In each case, it is evident that Sz(e) # Sz(f), and therefore Cs,(G) # 1.
If G is bipartite, then the result follows directly from Theorem O
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Figure 4. The vertices in N, and Ny are colored red, those in N, and N,, are colored blue, and the
vertices belonging to Ny (e) and Ny (f) are colored black.

We proceed to show that for tricyclic graphs based on structures (9), (10), or (11) in Figure
there exists no graph with Sz-complexity equal to one.
Now, let G [C,] denote the graph obtained by attaching a cycle C, to a vertex of G.

Theorem 3.4. [8] Let G be a graph and consider the construction G|[C,|, where r is odd. Then
Cs(G[Cy]) #1.

Theorem 3.5. Let H be the graph formed by extending G [C,] through the attachment of trees to some
of its vertices. If Cs,(H) = 1, then H is leafless.

Proof. Assume |V (H)| =n and e is a leaf of H. Then Sz(e) = n — 1. Consider f € E(C;). If
r is even, then clearly Sz(f) # n — 1. Also, if r is odd, then similar to the proof of Theorem
it is not possible for all edges belonging to the cycle C, to simultaneously have a Szeged
contribution equal to n — 1 that is a contradiction. Hence H is leafless. O

From Theorem we obtain the following result.

Corollary 3.6. Let G be a tricyclic graph based on structures (9), (10), or (11) in Figure 2| If
Cs:(G) =1, then G is leafless.

Theorem 3.7. Let G be a tricyclic graph based on structure (11) in Figure2l Then Cg,(G) # 1.

Proof. If G contains a leaf, then by Corollary 3.6 Cs,(G) # 1. Hence consider G is leafless.
Let G consists of Cy, C4, and C; as illustrated in Figure Hjand x,y € V(G) are cut vertices. If
p or r is odd, then by Theorem 3.4 Cs,(G) # 1. Thus p and r are even. Assume e € E(C;)
and f € E(C,). Then Sz(e) = (§) (|V(G)| — §) and Sz(f) = () (]V(G)| — §). It follows that
p =r. Now we consider two cases:

Case 1. Suppose that g is odd. Then C; consists of two xy-paths, one of odd length and
the other even. Suppose g lies at the center of the odd xy-path (see Figure @ and h € E(Cy)
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X Y

Figure 5. The graph G composed of three cycles C,, C;, and C;, with cut vertices x and y.
&
(X O
Figure 6. The middle edge g of the xy-path.

2
such that x € Ny(h). Therefore Sz(g) = <% +p— 1) and Sz(h) = (% +p— 1> (%)
Hence, we infer that Sz(g) # Sz(h).
Case 2. Assume g is even. Thus C, consists of two even (or odd) xy-paths. Let g € E(C,) be

amiddle edge of an xy-path. Then Sz(g) = (3 +p — 1)2. Hence Sz(g) # Sz(e) thate € E(Cy).
Therefore Cs,(G) # 1.
]

Theorem 3.8. Suppose G is a tricyclic graph based on structures (9) or (10) in Figure |2, Then
CSZ(G) 7& L.

Proof. If G has a leaf, then by Corollary [3.6(Cs,(G) # 1. Now, assume G is leafless and con-
structed from ©(l4,15,13) that C, with a cut vertex connected to it. We analyze the following
four cases:

Case 1. One of the lengths [; is odd. Consider Figure [/l In analogy with the proof of
Theorem we analyze the Szeged contributions of the middle edges e and f, contingent
upon the vertex where the cycle C; is connected:

(i) C, is connected to w. Thus Sz(e) = (”772)2 and Sz(f) = (%52) (
(i) C, is connected to y. Then Sz(e) = (”2;2)2 and Sz(f) = (%2 +
(iii) C, is connected to v. It follows that
Sz(e) = ("77) ("7* +r—1) and Sz(f) = (*3*) (3)-

(iv) C; is connected to the blue vertices except for v in Figure[7](1). Hence

Sz(e) = ("7*) ("% +r—1) and Sz(f) = (3) ("3* +r - 1).
(v) Cy is connected to the red vertices in Figure [7](1). Consequently,

Sz(e) = ("52) (52 +r—1) and Sz(f) = (4 +7 1) ("52).

Case 2. Two of the lengths /; are odd. Refer to Figure 8| Similar to case 1, we examine the
following items:
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t i
@D ()
Figure 8. Colors are assigned as previously described.
(i) C; is connected to v or w. Then Sz(e) = (”T_l) (”T_l +r— 1) and Sz(f) = (%51) (%52).
2
(ii) C, is connected to y. Therefore Sz(e) = (”T_l> and Sz(f) = (%42 +r—1) <”T_1
(iii) G, is connected to the blue vertices except for v and w in Figure §|(1). It follows that
sz(e) = ("5%) (5 +7—1) and 52(f) = (*51) (%52 +7—1).

(iv) C; is connected to the red vertices in Figure §|(1). Then we infer that

Sz(e) = <”T_1> (”T_lJrr— 1) and Sz(f) = ("T_l +7r— 1> (%3).

Case 3. None of the lengths J; is odd. Consider Figure[9] Similar to the previous cases, we
investigate the following items:
(i) C; is connected to the red vertices except for m and y in Figure[9](1). Consequently,

Sz(e) = (”T“+r—1> (”T_1> and Sz(f) = (”TH) (”T_lJrr—l).

(ii) C; is connected to the blue vertices except for v in Figure[9](1). Thus

Sz(e) = (”T“) (”T_l—i-r—l) and Sz(f) = (”Tﬂ-l—r—l) <”T_1>

(iii) Cy is connected to y. Then
Sz(e) = (”TH +r— 1) <”T_1> and Sz(g) = <”T_1 +r— 1) (”T“>
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(iv) C, is connected to v. Hence

Sz(e) = (’%Ll) (”2;1 +7r— 1) and Sz(g) = <”TH +r— 1) (”T’l)

(v) C; is connected to m. It follows that

Sz(e) = (”T’Ll +r— 1) (”T_l) and Sz(h) = <”T_1 +r— 1) <”T+1>

T SRR S NI G R g
Ue mI Yo ml Yo ml Yo mhl Y
DO G G
M (2) ©) (4)

Figure 9. Four middle edges.

Case 4. Three of the lengths /; are odd. Based on the argument presented in the proof of
Theorem if e = uv is a middle edge of an st-path in G, then |n, — n,| = r — 1. In contrast,
for an edge f = xy adjacent to s along the longest path connecting s and ¢, we deduce that
|y —ny| >r+1.

In all the above cases, two edges with different Szeged contributions are identified, indi-
cating that Cs,(G) # 1. O

4 Conclusions

In this study, twelve distinct families of tricyclic graphs were systematically classified
according to their Sz-complexity. Among these, only two families were found to contain
graphs with Sz-complexity one. Furthermore, earlier investigations have examined unicyclic
and bicyclic graphs through the lens of the vector (Cg,, Ciy) = (1,Cw ). By extending this clas-
sification framework to include three additional tricyclic families, a complete categorization
of all tricyclic graphs with respect to this vector becomes attainable.
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