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Abstract. Several voting systems are utilized to allocate both political and non-political positions
across countries worldwide. Plurality voting and approval voting are among the most widely im-
plemented electoral systems. Established statistical methods are employed to ensure the accuracy of
vote counting and the validation of election results. Two fundamental approaches that significantly
enhance the likelihood of identifying errors in election outcomes are Risk-limiting audit (RLA) and
Bayesian audit (BA). These audit methods assess the security of elections using statistical tools, based
on the random selection of cast votes and their interpretation as evidence supporting or contradicting
the reported results. In this paper, we first examine the advantages of a specific form of approval
voting, referred to as score voting, and then describe two types of risk-limiting audits to evaluate the
accuracy of vote counting and the results. The proposed auditing method for score voting is adapted
from the Ballot-polling risk-limiting audits to verify outcomes (BRAVO). Simulation results confirm
the effectiveness and accuracy of our approach.
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1 Introduction

There are two primary objectives in any voting procedure: first, to ensure the selection
of the most desirable option among the candidates; and second, to ensure that the election
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results are accurate and reliable. The focus of this paper is primarily on the second objective,
although a brief discussion of the first will also be provided.

A critical examination of traditional voting methods reveals several inherent drawbacks
and limitations. Many voting systems emphasize the consensus of a majority of voters in
selecting one or more candidates. This majority-focused approach, though widespread, does
not account for situations where voters may select candidates not because they are the most
preferred, but to eliminate other candidates. This phenomenon, where voters choose to avoid
an unfavorable option, highlights the complexity of voter preferences. Some voting systems,
such as plurality voting and majority voting, which are based on majority rule, can lead to
the tyranny of the majority or plurality rule. The tyranny of the majority refers to a scenario
in which the majority imposes its will on minority factions, disregarding their interests. In
countries with a presidential system, where the head of government is elected directly by the
people, majority rule can result in an autocratic or dictatorial system, particularly when there
are no term limits. For instance, in countries such as North Korea, Egypt, and Syria, political
power is often concentrated in the hands of a minority group, even though elections are held.
Prior to the Twenty-second amendment to the U.S. constitution, there were no presidential
term limits, allowing a single individual to hold office for an indefinite period. After the
amendment passed in 1947, a president can serve no more than two terms (a maximum
of eight years), partly to prevent the tyranny of the majority. Similarly, in parliamentary
systems, individuals with a consistent base of support can retain a seat for extended periods,
as there are often no term limits on parliamentary elections.

To address the limitations of plurality voting, approval voting has been proposed. Ap-
proval voting, first formally introduced in [18], and later revised and published in [3], allows
voters to approve multiple candidates. However, approval voting has its own shortcom-
ings, the most notable being that it does not account for the intensity of voters preferences.
Voters may approve multiple candidates, but the system does not differentiate the level of
support for each candidate. Since individuals’ opinions about candidates are not uniform
or without intensity, this lack of differentiation can cause problems, particularly when polit-
ical parties attempt to convince voters to approve all candidates on a given list. This limits
the individual’s decision-making power when they must decide how strongly they support
each candidate. A potential improvement is ranked voting, which allows voters to rank can-
didates in order of preference. However, ranked voting methods vary in how winners are
determined, and some of these methods do not result in a single, clear winner. Additionally,
ranked voting does not provide a measure of preference intensity. The evaluation in ranked
voting is based on ordinal ranking, where the difference between ranks is not specified. The
most optimal system, which avoids the limitations of previous methods, is score voting.

Score voting aggregates voters’ preferences in a manner that reflects the intensity of those
preferences. By using a scoring system, it becomes possible to more accurately measure the
differences between candidates. In score voting, instead of relying on methods like ranked
voting, the winner(s) is determined by the sum of the scores assigned by voters.

While scoring systems provide a more nuanced understanding of voter preferences, an
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important aspect of election security is ensuring the accuracy and reliability of vote count-
ing. The most widely used methods for verifying vote counts are RLAs and BAs. The RLA
is an efficient, conditional algorithm that assesses the accuracy of election results through
statistical hypothesis testing. The null hypothesis posits that the reported winner did not
actually win, while the alternative hypothesis suggests that the reported winner is the true
victor. To test this, a sequential sampling process is employed, with the sample size not
predetermined but bounded by an upper limit. Sampling continues until the upper limit is
reached, or the evidence supports the alternative hypothesis, at which point the results are
confirmed. If the alternative hypothesis is not supported, a full manual recount is conducted.
Random sampling can be done with or without replacement.

The Bayesian audit, similar to the RLA, also uses random sampling but incorporates prior
probabilities of vote proportions for the winner and loser. The evidence in the sample is used
to update the prior distribution of the vote proportion in favor of the reported winner. If
the sampling and counting conditions are met, both RLA and BA can yield identical results.
Bayesian inference methods are commonly applied in election polling and auditing, as dis-
cussed in [1, 7, 11, 12].

This paper introduces a ballot polling risk-limiting audit (RLA) adapted from the BRAVO
method [10]. The method is designed for k-winner contests and utilizes appropriate statisti-
cal tests to audit election results. The paper is organized as follows: Section 2 reviews related
work; Section 3 discusses the advantages of score voting; Section 4 explains the context and
notation used; Section 5 presents the proposed audit methods; and Section 6 provides a com-
parison of results and simulation outcomes.

2 Related works

The application of statistical methods in audit processes was first introduced in [9]. The
error-count method presented in this paper reduces the sample size required for audits, while
still producing results comparable to a statistical recount conducted with a larger sample.
In [14], post-election audits based on statistical testing were introduced. The approach pro-
posed by Stark utilizes a P-value for hypothesis testing, where the decision to either perform
a full manual recount or continue sampling is based on comparing the P-value with a pre-
defined test statistic value. In [10], a flexible protocol for auditing election results, called
BRAVO, was introduced. This protocol also includes a table for estimating the average sam-
ple size required to accept or reject the null hypothesis. Many subsequent audit methods
have been inspired by the BRAVO framework.

Sarwate et al briefly discussed the use of scored systems in their work [13]. In their
method, they consider the difference between the real value and the reported value of each
ballot, which they refer to as the ballot error. Using these errors, they construct a test statistic.
Rather than relying on the fraction of ballots cast, they use the election margin—the mini-
mum level of error necessary to alter the election outcome. In [16], risk-limiting audits were
proposed for proportional representation election systems, where each voter selects a party,
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and seats are allocated to parties based on their proportion of the total votes.
In [11], A simple risk-limiting post-election audit (CLIP AUDIT) method was introduced,

which is based on the difference in the number of ballots for reported winners and losers in
the sample. This method is claimed to be independent of the unofficial margin, in contrast
to the BRAVO method. [2] developed a risk-limiting audit for Instant Runoff Voting (IRV)
based on the BRAVO framework. In this approach, IRV elections are treated as several si-
multaneous First-Past-The-Post (FPTP) elections. In each round of the audit, one candidate
is eliminated, and the audit continues until a winner is determined.

In [15], the sets of half-average nulls generate risk-limiting audit (SHANGRLA) was in-
troduced. The innovation of this method lies in the construction of sets of assertions for
contests. Each null hypothesis is formalized as a statement such as the average value of assorter
functions is not greater than 1/2 for a collection of finite lists of nonnegative numbers.

Finally, [7] evaluated several audit methods using simulation. The study compared dif-
ferent methods based on the quantities that need to be specified and their ability to automat-
ically limit risk. According to the findings, the BRAVO method automatically controls risk,
though the proportion of winner votes (as a required quantity) must still be predefined.

3 Why the score voting?

The main question is: What are the advantages of score voting? This section seeks to ad-
dress this question. As mentioned in the introduction, political parties sometimes encourage
voters to support an entire list of candidates (i.e., all candidates on the list). This method of
voting is often irrational and can lead to several issues. For instance, pairing well-known
candidates with lesser-known or less-qualified candidates can increase the likelihood of un-
deserving individuals being elected to positions of political power. This results in potential
abuse of power by the parties. A notable example is the 2016 parliamentary elections in Iran,
where one political party won all 30 seats in Tehran by promoting a single list of 30 candi-
dates. The party leaders encouraged voters to select all candidates on the list, leading to the
party’s sweeping victory. However, the poor performance of these representatives prompted
significant criticism of this method. In contrast, the score voting system allows voters to as-
sign a proportional score to each candidate based on their preferences. Higher scores increase
a candidate’s chance of winning, while lower scores decrease it. Therefore, candidates with
the highest scores emerge as the winners.

There are several criteria for evaluating electoral systems, which assess their strengths
and weaknesses from various perspectives (see [6]). These criteria, defined as follows, help
compare different systems. No voting method satisfies all of these criteria, and there is no
ideal system. Score voting is compared with four electoral systems based on primary election
criteria in Table 1.

• Monotonicity Criterion: A ranked voting system is monotonic if it is impossible to
prevent the election of a candidate by ranking them higher on some ballots, nor possible
to elect an otherwise unelected candidate by ranking them lower on some ballots, while
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all other ballots remain unchanged.

• Participation Criterion: Voting systems that do not satisfy the participation criterion
are described as exhibiting the “no-show paradox,” enabling a specific type of tactical
voting. In such cases, a voter may increase their preferred candidate’s chances of win-
ning by choosing not to vote. The participation criterion in definitive and probabilistic
framework is defined as follows:

– Definitive framework: According to the participation criterion, introducing a bal-
lot that ranks candidate A strictly above candidate B should not result in candidate
B winning instead of candidate A.

– Probabilistic framework: The participation criterion states that adding a ballot
where candidate A is strictly preferred to candidate B should not change the win-
ner from candidate A to candidate B.

• Consistency Criterion: A voting system satisfies the consistency criterion if, when the
electorate is divided arbitrarily into parts and the same result is achieved in each part,
the election of the entire electorate yields the same result.

• Condorcet Criterion: An electoral system satisfies the Condorcet criterion (or Con-
dorcet winner criterion) if it always selects the Condorcet winnera whenever one exists.

• Resolvability Criterion: A voting system is said to be resolvable if it has a low likeli-
hood of tie votes. Systems that satisfy the resolvability criterion ensure the uniqueness
of the winner.

Table 1. Yes∗ : Voting system satisfy criterion in special conditions

Criterion

Voting system Condorcet Resolvability Monontonicity Participation

Approval voting Yes Yes∗ Yes∗ Yes∗

Instant-runoff voting Yes No Yes∗ No
Plurality voting Yes Yes∗ Yes No

Score-voting Yes Yes Yes No
Two-round voting Yes∗ No No Yes

a A Condorcet method is an election method that elects the candidate who wins a majority of votes in every
head-to-head election against each of the other candidates, i.e., a candidate preferred by more voters than any
other candidate, when such a candidate exists.
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4 Context and notation

A variety of score voting systems exist, which are similar to one another to varying de-
grees. In this discussion, we focus on the most common and straightforward version of score
voting. In this system, there is a set C consisting of C candidates and a set B of N ballots. The
set of candidates, C, is divided into two subsets: W , which contains k winners, and L, which
contains C − k losers.

Each ballot consists of a list of C candidates, with scores assigned to each candidate. To
facilitate the voters and the tallying of scores, the ballots are often presented in a matrix
format. The names of the candidates are listed in the first column, and the scores are indicated
in the first row. An example of such a ballot is shown in the table below.

Candidate/Score 1 2 3 4

A □ □ □ ■
B □ □ □ ■
C □ □ □ ■
D □ □ □ ■

To implement score voting in an actual election, ballot papers are designed similarly to
multiple-choice answer sheets, and the tallying and summing of scores are conducted using
a scantron machine. This method helps to reduce errors associated with manual counting.
The objective of score voting is to select the winner(s) by computing the total score of each
candidate. The candidates with the highest total scores are declared the winners.

In score voting, each voter assigns a score to each candidate based on their preference
intensity, with scores ranging from 1 to C. There are two fundamental assumptions for each
ballot. First, no two distinct candidates receive the same score. Second, each candidate must
receive a score. Thus, each ballot can be viewed as a permutation function with a constant
summation, as follows:

SV : {1,2, . . . ,C} (1,2,...,C) 7→(i1,i2,...,iC)−−−−−−−−−−−−→ {1,2, . . . ,C},

where the total score of each ballot is given by

C

∑
j=1

ij =
C(C + 1)

2
.

The total score for the entire contest is

NC(C + 1)
2

,

and the winners (in the case of a multiple-winner election) are the candidates who accumu-
late the highest total scores. The total score for each candidate is the sum of the scores from
all ballots. Let the total score of candidate ci be denoted by Si for each i ∈ {1,2, . . . ,C}, and
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let Sij represent the sum of scores of candidate ci in the ballots where candidate ci received a
score of j for every i, j ∈ {1,2, . . . ,C}.

We have the relationship:

Si =
C

∑
j=1

Sij.

where Si and Sij refer to the total and partial scores, respectively. The true values of Si and
Sij are unknown; however, their reported values are provided, denoted as Ŝi and Ŝij, respec-
tively. To present the final election and audit results, we use a tabular format. In the final
table, the candidates’ names are listed in descending order of their scores in the first col-
umn, the partial scores are displayed in the first row, and the total score for each candidate
is shown in the last column. For every i, j ∈ {1,2, . . . ,C}, the entry in position (i, j) represents
the number of ballots in which candidate ci received a score of j.

An example of such a table for a contest with 7 candidates and 1000 ballots is shown
below:

Table 2. Report of candidate’s score

Candidate/Score 1 2 3 4 5 total score

c1 251 201 172 191 185 3142
c2 232 213 180 190 185 3117
c3 155 223 293 176 153 3051
c4 201 192 186 221 200 2973
c5 161 171 169 222 277 2117

5 Contest and Audit

We aim to conduct an audit of the results of an election involving C candidates, where
k > 1 candidates have been declared winners, and the remaining C − k candidates have been
declared losers. Let W and L denote the sets of winners and losers, respectively. Ballots
can be categorized as either valid or invalid. Valid ballots contain values that are reported
in favor of candidates, while invalid ballots are assigned a fiction candidate 0. Let the true,
unknown total scores of the C candidates and fiction candidate be represented by the vector
SC ≡ (Si)

C
i=0. The reported scores for the candidates are denoted by the vector ŜC ≡ (Ŝi)

C
i=0,

and the true unknown proportion of the total score is represented by the vector (πi)
C
i=0.

The reported proportion of the total score for candidate j is defined as

Pj =
Ŝj

∑C
i=1 Ŝi

, j ∈ {1,2, . . . ,C}.
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We use the fraction of valid scores obtained from valid votes, denoted by

tj =
Pj

∑C
i=1 Pi

, j ∈ {1,2, . . . ,C}.

Since the denominator includes only the scores derived from valid ballots, rather than the
total scores, it follows that Pj < tj. Let w and l be pronounced as “winner” and “loser,”
respectively. Let twl =

tw
tw+tl

represent the fraction of valid scores obtained by w and l among
all valid scores in the ballots cast during the contest. This fraction serves as the foundation
for subsequent computations.

5.1 Audit of total scores

We employ a comprehensive strategy to verify the election results. Each of the k reported
winners must defeat all C − k reported losers in a two-candidate contest, meaning the total
score of each winner must exceed the total score of each loser. Therefore, k(C − k) hypotheses
tests need to be conducted, or equivalently, k(C − k) assertions must be verified:

Sw > Sl, ∀ w ∈W , l ∈ L.

To test these assertions, ballots are drawn randomly and uniformly from the cast votes. After
observing the scores of candidates on the sampled ballot, the assertions for each pair (w, l) ∈
W ×L are checked simultaneously. Upon rejecting or accepting each hypothesis during the
audit, the corresponding candidates are either excluded or a manual recount is performed.

To evaluate the accuracy of the reported results, we apply a risk-limiting audit (RLA). In
this process, k(C − k) statistical hypothesis tests will be examined at a significance level α, as
follows:

H0 : πw ≤ πl vs H1 : πw > πl. (1)

The procedure for the RLAs in score voting, based on the aforementioned statistical hypothe-
ses, is outlined as follows:

1. Select the risk limit α ∈ (0,1) , and M, the maximum number of ballots to audit before
proceeding to a full hand count.

2. Set m = 0 and Twl = 1 ∀(w, l) ∈W ×L

3. Randomly select a ballot without replacement from those cast in the contest, and then
increment m.

4. Based on the observed difference between sw and sl in the extracted ballots for each
w ∈W and l ∈ L, the value of Twl is updated as follows:

(i) Twl ×
( twl

0.5

)i
if sw − sl = i, i ∈ {1,2, . . . ,C − 1}.

(ii) Twl ×
(1 − twl

0.5

)i
if sw − sl = −i, i ∈ {1,2, . . . ,C − 1},

where sw and s1 are the scores corresponding to w and l.
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5. If Twl ≥ 1
α for some (w, l), reject the corresponding null hypothesis and stop the opera-

tional computation related to those tests.

6. If all null hypotheses are rejected, conclude the audit, confirming that the reported
results are valid and the election is verified. Otherwise, if m < M, proceed back to Step
3.

7. Once the maximum sample size M is reached, if at least one null hypothesis is accepted
or no definitive result is obtained, perform a complete manual count, replacing the
reported results with the results from the manual count.

The statistic used in audit method is as follows:

Twl = (2twl)
δ(2 − 2twl)

λ, δ =
mw

∑
k=1

ik λ =
ml

∑
k=1

i′k,

where 1 ≤ m = mw + ml ≤ M and ik, i′k ∈ {1, . . . ,C − 1}. Here, mw represents the number of
ballots where the score of w exceeds the score of l, whereas ml denotes the number of ballots
where the score of l exceeds the score of w. This statistic is based on the difference in scores
between w and l on the ballots. As the difference in scores on the drawn ballot approaches
C− 1, the probability of rejecting the null hypothesis increases, and as the difference in scores
approaches 1 − C, the probability of accepting the alternative hypothesis decreases. Both of
these properties directly impact the limiting risk α.

5.2 Audit of partial scores

The alternative method described here provides additional details about the election re-
sults. This approach allows for the examination of partial scores of both winners and losers
and can serve as a complementary procedure to the previously discussed method. It is also
more efficient for large values of N. As shown in Section 4, the total score of each candidate
is the sum of their partial scores from 1 to C. Therefore, the parameters (Si, i = 1,2, . . . ,C)
represent the sum of the parameters (Sij, j = 1,2, . . . . ,C). Since the reported values of Swi and
Sli are available, these corresponding parameters can be tested for each pair (w, l) and for
each score i ∈ {1,2, . . . ,C}.

The parameters to be tested in this method are πwi =
Swi
St

and πl j =
Sl j
St

, where St represents
the total score obtained from all valid votes in the contest.

In this method, we conduct a detailed analysis of the scores of w and l and perform the
Ck(C − k) hypothesis test using the statistics Twli and Twlj. It is important to note that scores
of i were reported in favor of the winners, while scores of j were reported in favor of the
losers.

Let Swli =
Swi

Swi+Sli
represent the fraction of partial scores of i belonging to w, reported to

have been received among the ballots that show score i for either w or l. Similarly, the fraction
Swlj =

Sl j
Sl j+Swj

is defined in the same way. The values of Swli and Swlj are both greater than
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0.5 and are used as the basis for the multiplier. Hypothesis tests are organized based on the
Ck(C − k) values of Swli and Swlj as follows:

H0 = πwi ≤ πli vs H1 = πwi > πli

H0 = πl j ≤ πwj vs H1 = πl j > πwj

The second risk-limiting audit (RLA) method for score voting, with respect to these statistical
hypotheses, is outlined here. The steps for implementing the RLA are as follows:

1. Select the risk limit α ∈ (0,1) , and M, the maximum number of ballots to audit before
proceeding to a full hand count.

2. Set m = 0 and initialize {Twli = 1, Twlj = 1} for all (w, l) ∈W ×L, i, j ∈ {1,2, . . . ,C}.

3. Draw a ballot uniformly at random, without replacement, from the cast ballots and
increment m.

4. Based on the ballot’s content:

- If the score i is observed for w, multiply Twli by Swli
0.5 for each l ∈ L, and repeat for

all such w.

- If the score i is observed for l, multiply Twli by 1−Swli
0.5 for each w ∈ W , and repeat

for all such l.

- If the score j is observed for w, multiply Twlj by
Swlj
0.5 for each w ∈W , and repeat for

all such l.

- If the score j is observed for l, multiply Twlj by
1−Swlj

0.5 for each l ∈ L, and repeat for
all such w.

5. If Twli ≥ 1
α for some (w, l, i), reject the corresponding null hypothesis and stop the oper-

ational related to that test.

6. If Twlj ≥ 1
α for some (w, l, j), reject the corresponding null hypothesis and stop the oper-

ational related to those test.

7. Conclude the audit if all null hypotheses are rejected, confirming the reported results
as valid and verifying the election. Otherwise, if m < M, proceed to Step 3.

8. After reaching the sample size M, if at least one of the null hypotheses is accepted or no
definitive result is obtained, perform a complete manual count and replace the reported
results with the results of the manual count.

This method ensures that the risk of certifying incorrect results is limited, while allowing for
efficient verification of the election outcome based on partial score data.
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6 Computational Results

In most multi-winner elections, candidates form coalitions to secure all the available seats.
These coalitions are subsets of the candidates who participated in the contest. A portion of
voters tend to assign the highest scores to such coalitions, and we refer to this proportion as
the “index of directed votes.” The true value of this parameter is not directly available, so it
must be estimated using the reported election results. We denote this estimate as β and use
it to determine the mean sample number in the auditing process for score voting. Our tables
are constructed based on the value of β.

The method for calculating β is described as follows:
Consider an election with C candidates, k winners, and N valid votes, where k candidates
are ultimately declared winners. The sum of the scores reported for the winners is denoted
by Sw, and the total score for the election is St =

NC(C+1)
2 . The score Sw can be decomposed

into contributions from two subgroups of voters: the directed subgroup and the neutral sub-
group. In the directed subgroup, a proportion β (the index of directed votes) of the highest
scores, (C,C − 1, . . . ,C − k + 1), are allocated to the reported winners. In the neutral sub-
group, the scores for the winners are distributed uniformly, such that all candidates receive
equal scores. Thus, we can express Sw as:

Sw = βN(C + C − 1 + · · ·+ C − k + 1) + γ
kSt

C
.

where γ and β are positive parameters.
It is straightforward to show that γ = 1 − β. After simplifying the above expression, we

obtain the following formula for β:

β =
Sw − Nk(C+1)

2
Nk(C−k)

2

.

We have simulated the two described risk-limiting audit methods in Section 4 for the case
where C = 10 and k = 4, with various values of N and different risk limits (α = 1% and
α = 5%), as well as for values of β = 2%,3%,4%,5%. The simulations were implemented and
analyzed using MATLAB. Due to the lack of access to large real data, we used simulated data
for our analysis.

In the simulations, ballots are modeled as random vectors, where the arrays represent
permutations of integers from 1 to 10. Tables 3 and 4 report estimates of the Average Sample
Number (ASN), which represents the expected number of ballots required to either accept or
reject the null hypothesis. For each combination of N, α, and β, we ran 100 simulations and
computed the average number of ballots checked across these simulations. The notation R
indicates cases where our method could not compute the ASN, necessitating a full recount
of all ballots.

The results show that ASN is influenced by β, with higher values of β leading to a decrease
in ASN. The numbers following R in the tables represent the threshold values, and the first
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and second methods provide the ASN for each number greater than these thresholds. For
example, in the first column of Table 4, the second audit method provides the ASN for (N ≥
200,000,α = 1%, β = 2%).

Table 3. Average of ballots sampled over 100 simulations for the risk-limimting audit (Total scores)
α = 1% α = 5%

N β = 2% β = 3% β = 4% β = 5% β = 2% β = 3% β = 4% β = 5%

10000 R R 1236 871 R R 742 566
20000 R R 1302 791 3124 1312 854 532
30000 R 2123 1226 831 3118 1409 728 496
40000 R 2314 1220 910 3315 1434 795 459
50000 R 2182 1243 819 3275 1410 844 548
60000 5167 2120 1290 796 3148 1338 769 520
70000 5167 2062 1247 835 2904 1355 756 525
80000 5152 2435 1289 865 3170 1307 764 501
90000 5080 2275 1188 804 3404 1569 744 458
100000 5150 2251 1220 792 3419 1262 712 508
200000 5012 2250 1336 819 3127 1357 813 652
300000 5205 2593 1251 890 2922 1466 787 452
400000 5019 2346 1303 824 3132 1378 835 525
500000 4641 2232 1287 793 2947 1388 777 455
600000 4922 2307 1169 757 3217 1388 761 477
700000 4682 2169 1271 781 3263 1311 725 518
800000 4645 2330 1289 807 3074 1428 736 477
900000 4849 2212 1245 790 3088 1296 774 498

1000000 5105 2152 1227 879 3062 1311 684 492

As can be seen, more ballots are needed for auditing in the second method and this is
reasonable because of the more number of hypothesis tests.

6.1 Performance and comparison

We employed the sequential probability ratio test (SPRT) method to conduct statistical
analyses, following the approach outlined by Wald [17]. In the SPRT framework, the sample
size is not predetermined; instead, an upper limit is defined. A key advantage of SPRT lies in
its ability to produce valid results with smaller sample sizes compared to methods requiring
a fixed sample size, all while preserving equivalent type I and type II error rates. Moreover,
SPRT does not rely on assumptions about the underlying probability distribution, making it
suitable for populations with unknown or unspecified distributions.

The specific outcomes of a score voting strategy do not necessarily align with those of
other votingmethods, such as Condorcet voting, ranked-choice voting, or Instant-runoff vot-
ing. In a Condorcet voting system, the winning candidate is determined based on the highest
preference rank in head-to-head competitions against other candidates. Ranked voting can
be interpreted in various ways. The most common interpretation declares the candidate with
the most first-place votes as the winner.

Instant-runoff voting, a subset of ranked voting, combines the Condorcet method with the
elimination of lower-ranked candidates to identify the winner. Lindeman et al acknowledged
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Table 4. Average of ballots sampled over 100 simulations for the risk-limimting audit (Partial scores)
α = 1% α = 5%

N β = 2% β = 3% β = 4% β = 5% β = 2% β = 3% β = 4% β = 5%

10000 R R R R R R R R
20000 R R R 8917 R R 7781 5522
30000 R R 13716 9011 R R 7984 4940
40000 R R 14325 9237 R 14525 8967 5375
50000 R 24685 13060 8502 R 16130 8316 5540
60000 R 24169 13642 9107 R 15274 8183 5428
70000 R 24712 14159 8949 31851 14947 8260 5332
80000 R 25133 14520 8946 31851 15693 8673 5501
90000 R 24289 13867 8870 31341 14242 8620 5437

100000 R 24863 13443 8824 30047 14443 8446 5530
200000 54851 25066 13477 9313 34625 15715 8688 5528
300000 59344 24952 15001 8461 37539 14595 8618 5431
400000 58182 26268 13606 8536 33728 16170 8399 5362
500000 62103 24676 15343 8965 35679 14405 8150 5234
600000 59914 25411 14038 9536 35318 15137 8573 5729
700000 56461 25709 14956 9132 33004 15197 8828 5255
800000 57358 25247 14261 9210 33802 15466 8229 5433
900000 55873 24837 14327 8567 34861 14785 9337 5351

1000000 57841 24387 14548 8808 30047 13869 8159 5775

that their audit method is not applicable to ranked voting systems [10]. In our approach, if
the average of candidates’ ratings on ballots is used as the criterion for victory, the outcomes
of ranked voting and score voting coincide. As previously stated, two voting methods are
comparable when they yield identical results. Consequently, score voting can only be com-
pared with other score-based systems.

Sarwate and Shacham proposed an audit method specifically designed for score voting.
Their method employs a statistic based on the margins between the actual and reported val-
ues. Comparative results indicate that the average sample number (ASN) in our method is
5-10% smaller than in their method. Table 5 presents the findings for N = 100000,α = 5%,C =

10,k = 4.
The results indicate that as the difference in votes between winners and losers increases

(i.e., when β is larger), the ASN decreases. Generally, in cases where the voting population
is large, the ASN values of the two methods exhibit minimal differences. However, there is a
slight advantage to our method due to the simplicity of the test statistic.

7 Conclusion

We have defined two risk-limiting audit for score voting systems. These two methods can
be used as complement to a real election. Our audit methods have two main weaknesses. The
first is that the generating of data and drawing of ballots have been carried out in a simulation
setting. This cause that some of the limitations of a real election such as incorrect votes are
not considered. Second, it does not work well enough to implement in election with small
number of ballots (N < 10000) when the amount of β is small. Research could focus on these
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Table 5. Estimted sample size, as a nunber of ballots and precentage of the total ballots, requaried to
audit the election results based on Sarwate and Shacham audit (Audit 1) and our audit (Audit 2).

β Audit 1 Audit 2
ASN % ASN %

2% 3591 0.03% 3419 0.03%
3% 1327 0.01% 1262 0.01%
4% 782 0.007% 712 0.007%
5% 553 0.005% 508 0.005%
6% 488 0.004% 446 0.004%
7% 341 0.003% 311 0.003%
8% 297 0.002% 273 0.002%
9% 139 0.001% 128 0.001%

10% 106 0.001% 97 0.001%

drawbacks in future.
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