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1 Introduction

Topological indices are numerical parameters of graphs that are invariant under graph
isomorphism and provide valuable insights into the structural properties of chemical com-
pounds and their analysis. The Sombor index, introduced recently by Ivan Gutman, is one
of these indices and has gained attention for its ability to obtain various structural features
of graphs and predict the physicochemical properties of molecules. This index has been sur-
veyed for some graphs by Aguilar, Das et al., Ghanbari and Alikhani, Kulli, Milovanović et
al., and Mohammadi et al., in articles such as [1], [7], [11], [17], [20], and [21].

Despite the growing interest in the Sombor index, there is still much to explore, partic-
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ularly in terms of finding new bounds and relationships with other well-known topological
indices. The goal of this paper is to provide a comprehensive set of bounds for the Sombor
index using various mathematical techniques and statistical indices such as the AG index,
GA index, variance, and standard deviation. In particular, these connections provide sev-
eral benefits: Statistical indices allow for new bounds on the Sombor index and enhance the
predictive power in both theoretical and applied contexts. Additionally, statistical indices
help interpret the Sombor index in terms of independent properties of edges and how their
distribution.

Some indices such as the arithmetic index and geometric index have been studied by Al-
daz and Çelik in the articles such as [2], [3], the GA and AG indices by Cui et al., Chakrabarty,
Das, Glaser, Rodin, Vujošević and et al. in the articles such as [6], [8], [9], [12], [23] and [26],
and the SDD(G) index in the reference [27] by Vasilyev. Also, statistical studies on the Som-
bor index are done in th articles [1], [14] and [18]. In several papers, upper and lower bounds
between the Sombor index, energy, and Laplacian energy of graphs are discussed, see for
example [25] and [4].

In this article, we introduce these indices and establish new bounds that contribute to the
ongoing research in this area.

Let G = (V, E) ( |V(G)|= n and |E(G)|= m ) be a graph. Then the Somber index is defined
as follows

SO(G) = ∑
uv∈E(G)

√
d2(u) + d2(v), (1)

where d(u) is the degree of vertex u in G.

2 Topological and Statistical Methods for Bounds of the Sombor index

In reference [7], using the elementary geometric method, a geometric view of the degrees
of vertices using the Euclidean distance is introduced and could offer a different view of
structural relationships in graphs even if the bounds aren’t necessarily tighter. This approach
could be useful in different contexts or types of graphs, such as random graphs. In this article,
we use some definitions based on this article and prove some theorems.

The ordered pair w = (d(u),d(v)) is a point in the degree-coordinate (or d-coordinate)
called the degree-point (or d-point) of the edge uv ∈ E(G) where d(u) denotes the degree
of the vertex u and d(v) the degree of the vertex v in the (2-dimensional) coordinate sys-
tem. The point with coordinates (d(v),d(u)) is the dual-degree point (or dd-point) of the
edge uv ∈ E(G). The degree-radius (or d-radius) of the edge uv ∈ E(G) is the Euclidean dis-
tance between w = (d(u),d(v)) and the origin of the coordinate system which is denoted by
z = |w| =

√
d(u)2 + d(v)2. So,

√
2z ≥ d(u) + d(v). (2)

Definition 2.1. [3] The arithmetic mean for the nonnegative real numbers x1, x2, . . . , xm is as
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µ = Ra =
1
m ∑m

i=1 xi, for the geometric mean as Rg = (∏m
i=1 xi)

1
m = ∏m

i=1 x
1
m
i and for the harmonic

mean as Rh =
m

∑m
i=1

1
xi

.

Remark 2.2. Note that inequality of arithmetic and geometric mean for the nonnegative real numbers
x1, x2, . . . , xm is as follows

Rg =
m

∏
i=1

x
1
m
i ≤ 1

m

m

∑
i=1

xi = Ra. (3)

Equality holds whenever x1 = x2 = . . . = xm. Also, refering the reference [3], we could consider that
for i = 1, 2, . . . , m, if α = (α1, α2, . . . , αm), αi > 0 and ∑m

i=1 αi = 1, then the general arithmetic-
geometric inequality is ∏m

i=1 xαi
i ≤ ∑m

i=1 αixi. Also if apply the variable change xi = ys
i , then the

general arithmetic-geometric inequality for s > 0 is as

m

∏
i=1

yαi
i ≤ (

m

∑
i=1

αiys
i )

1
s , (4)

and for 0 < s < 1, Jensen’s inequality tells us that

(
m

∑
i=1

αiys
i )

1
s ≤

m

∑
i=1

αiyi, (5)

since the function ys is concave, and furthermore the inequality is strict unless y1 = y2 = . . . = ym

(this follows from the equality case in Jensen’s inequality).
So, applying Inequalities (4) and (5) for 0 < s < 1 we have

m

∏
i=1

yαi
i ≤ (

m

∑
i=1

αiys
i )

1
s ≤

m

∑
i=1

αiyi.

Based on inequality (5), consider αi =
1
m , s = 1

2 and yi = d(ui)
2 + d(vi)

2 = z2
i , we have

SO(G) ≤
√

F(G)m, (6)

in which F(G) = Σ(d(ui)
2 + d(vi)

2). The index F(G) is called the forgotten index and intro-
duced in [10]. This relation is proved in [20] by another way.

Also, by appling inequality (3), if G is a graph with n vertices and m edges such that wi
for i = 1, 2, . . . , m be d-points related edges, then for the nonnegative numbers z1, z2, . . . , zm,

mRg ≤ SO(G).

Equality holds whenever z1 = z2 = . . . = zm. Now we intend to obtain upper and lower
bounds for the Sombor index using the concept of variance in Theorems 2.4, 2.9, 2.11 and
2.14, which actually improve the aforementioned bounds.

In [?] discussed increasing linearly of the variance of topological indices which are sums
of f (d(u),d(v)) for a function f : N2 → R of a random graph with n vertices. As a result,
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we can explore the relationship between the Sombor index and statistical indices, such as
the variance and geometric mean of degree points in a graph. By examining the variance of
these degree points, we can evaluate the stability and variability of the Sombor index across
various types of graphs, providing valuable insights into graph topology and structure.

Theorem 2.3. [2, Th, 2.1] For i = 1, 2, . . . , m, xi ≥ 0, and let αi > 0, βi > 0 satisfy ∑m
i=1 αi =

∑m
i=1 βi = 1. Writing αmin := min{α1, . . . , αm}, αmax = max{α1, . . . , αm}, and similarly for βmin

and βmax, we have

min
k=1,2,...,n

{αk
βk

}(
m

∑
i=1

βixi −
m

∏
i=1

xβi
i ) ≤

m

∑
i=1

αixi −
m

∏
i=1

xαi
i ≤ max

k=1,2,...,n
{αk

βk
}(

m

∑
i=1

βixi −
m

∏
i=1

xβi
i ). (7)

Equality holds in either of the inequalities if and only if either x1 = · · · = xn or αmax = βmin (or
equivalently, αmin = βmax).

Theorem 2.4. Let G be a graph with n vertices, m edges and zi for i = 1, 2, . . . , m be the measures
of its d-points wi. Then

1
βmax

(
m

∑
i=1

βizi −
m

∏
i=1

zβi
i ) + mRg ≤ SO(G) ≤ 1

βmin
(

m

∑
i=1

βizi −
m

∏
i=1

zβi
i ) + mRg (8)

such that β = (β1, β2, . . . , βm), βi > 0 and ∑m
i=1 βi = 1. Equality holds in each of the inequalities if

and only if z1 = z2 = . . . = zm or βmax =
1
m (or βmin = 1

m ).

Proof. In Inequation (7), by setting α = (α1, . . . , αm) = ( 1
m , 1

m , . . . , 1
m ), it follows that

1
mβmax

(
m

∑
i=1

βizi −
m

∏
i=1

zβi
i ) ≤

m

∑
i=1

1
m

zi −
m

∏
i=1

z
1
m
i ≤ 1

mβmin
(

m

∑
i=1

βizi −
m

∏
i=1

zβi
i ),

thus

1
βmax

(
m

∑
i=1

βizi −
m

∏
i=1

zβi
i ) ≤ SO(G)− mRg ≤

1
βmin

(
m

∑
i=1

βizi −
m

∏
i=1

zβi
i ),

and in result

1
βmax

(
m

∑
i=1

βizi −
m

∏
i=1

zβi
i ) + mRg ≤ SO(G) ≤ 1

βmin
(

m

∑
i=1

βizi −
m

∏
i=1

zβi
i ) + mRg.

Definition 2.5. [2] The variance of a vector of the real numbers X
1
2 = (x

1
2
1 , x

1
2
2 , . . . , x

1
2
m) is defined

as σ2(X
1
2 ) = 1

m ∑m
i=1 (x

1
2
i − ∑m

k=1
1
m x

1
2
k )

2 with respect to the discrete probability ∑n
i=1 αiδxi .

Definition 2.6. [24] For the nonnegative real numbers X = {x1, x2, · · · , xm} the standard deviation
is defined as σ(X) =

√
σ2(X).
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The standard deviation measures the amount of variation or dispersion in a set of values.
In a graph, it shows how much the degrees of the vertices in a graph deviate from the average
(mean) degree.

Definition 2.7. Suppose W = {w1, w2, . . . , wm} be the degree points related the edges of the graph
G, then for the nonnegative numbers Z = {z1, z2, . . . , zm} the arithmetic mean µ and variance σ2

are denoted as:

µ(Z) =
1
m

n

∑
i=1

zi =
SO(G)

m
, σ2(Z) =

1
m

m

∑
i=1

(zi − µ)2 =
1
m

m

∑
i=1

(zi −
SO(G)

m
)2. (9)

Theorem 2.8. [3, Th, 1] For i = 1, 2, . . . , m, let xi ≥ 0, and let αi > 0 satisfy ∑m
i=1 αi = 1. Then

m

∏
i=1

xαi
i ≤

m

∑
i=1

αixi −
m

∑
i=1

αi(x
1
2
i −

m

∑
k=1

αk.x
1
2
k )

2. (10)

Note that the right most term of Inequality (10) is the variance var(x
1
2 ) of the vector

X
1
2 = (x

1
2
1 , x

1
2
2 , . . . , x

1
2
m)

with respect to the probability ∑n
i=1 αiδxi . So a large variance (of x

1
2 ) pushes the arithmetic and geo-

metric means apart.

Theorem 2.9. Let G be a graph with n vertices and m edges such that for i = 1, 2, . . . , m, zi be the
meaures of the degree-points wi of G. Let αi > 0 satisfy ∑m

i=1 αi = 1. Then

m(Rg + σ2(Z
1
2 )) ≤ SO(G), (11)

in which Z
1
2 = (z

1
2
1 , z

1
2
2 , . . . , z

1
2
m).

Proof. It is clear that the right-hand of Inequality (10) is the variance of the set X
1
2 . Now

consider the graph G with d-points wi for i = 1, 2, . . . , m, with |wi|= zi, and for αi =
1
m , then

we obtain
m

∏
i=1

z
1
m
i ≤

m

∑
i=1

1
m

zi −
m

∑
i=1

1
m
(z

1
2
i −

m

∑
k=1

1
m

z
1
2
k )

2.

Hence

m
m

∏
i=1

z
1
m
i ≤

m

∑
i=1

zi −
m
m

m

∑
i=1

(z
1
2
i −

m

∑
k=1

1
m

z
1
2
k )

2.

This implies that

mRg ≤ SO(G)− mσ2(Z
1
2 )⇒ m(Rg + σ2(Z

1
2 )) ≤ SO(G).
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Remark 2.10. [3] For i = 1, 2, . . . , m, let xi ≥ 0, and let αi > 0 satisfy ∑m
i=1 αi = 1. Let 0 < M1 =

min{x1, x2, . . . , xm} and M2 = max{x1, x2, . . . , xm}. Then

1
2M2

m

∑
i=1

αi(xi −
m

∑
k=1

αkxk)
2 ≤

m

∑
i=1

αixi −
m

∏
i=1

xiαi ≤
1

2M1

m

∑
i=1

αi(xi −
m

∑
k=1

αkxk)
2.

Theorem 2.11. Let G be a graph with n vertices, m edges. Consider Z = {z1, z2, . . . , zm}, M1 =

min{z1, z2, . . . , zm} and M2 = max{z1, z2, . . . , zm}. Then

m(Rg +
σ2(Z)
2M2

) ≤ SO(G) ≤ m(Rg +
σ2(Z)
2M1

). (12)

Proof. With attention to the Remark (2.10), considering the graph G with d-points wi for
i = 1, 2, . . . , m. and for zi = |wi| and α = (α1, α2, . . . , αm) = ( 1

m , 1
m , . . . , 1

m ), where ∑m
i=1 αi = 1,

we have

1
2M2

m

∑
i=1

1
m
(zi −

m

∑
k=1

1
m

zk)
2 ≤

m

∑
i=1

1
m

zi −
m

∏
i=1

z
1
m
i ≤ 1

2M1

m

∑
i=1

1
m
(zi −

m

∑
k=1

1
m

zi)
2.

Thus

m
2M2m

m

∑
i=1

(zi −
m

∑
k=1

1
m

zk)
2 ≤

m

∑
i=1

zi − m
m

∏
i=1

z
1
m
i ≤ m

2M1m

m

∑
i=1

(zi −
m

∑
k=1

1
m

zi)
2

and so

m
2M2

σ2(Z) ≤ SO(G)− mRg ≤
m

2M1
σ2(Z).

Consequently

m(Rg +
σ2(Z)
2M2

) ≤ SO(G) ≤ m(Rg +
σ2(Z)
2M1

).

Incorporating standard deviation into the Sombor index allows for the quantification of
the degree-radius distribution’s variability, providing a clearer understanding of how the
degree-radii vary across the graph and its impact on topological properties.

Lemma 2.12. [23] Let m ≥ 2 and x1, x2, . . . , xm be a sequance of n ≥ 2 real numbers with mean
µ > 0 and variance σ2.

(a) If 0 ≤ σ
µ < 1√

n−1
, then each xi is positive.

(b) If every term of the sequence x1, x2, . . . , xm is positive, then 0 ≤ σ
µ <

√
m − 1.
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Corollary 2.13. [23] Fix m ≥ 2. If x1, x2, . . . , xm is a positive sequence with mean µ and variance
σ2, then

µ − m
√

x1 · x2 · . . . · xm ≤
√

m − 1 σ

Theorem 2.14. Let z1, z2, . . . , zm be a sequance of measures of degree-points w1, w2, . . . , wm per-
tained edges of the graph G for m ≥ 2. Then for the sequence z1, z2, . . . , zm with SO(G) > 0 and
variance σ2, we obtain

m√
m − 1

σ < SO(G) ≤ m(Rg +
√

m − 1 σ). (13)

Proof. By [23, Lemma, 2.10], whereas all of the terms of the sequence z1, z2, . . . , zm are posi-
tive. So

σ

µ
<

√
m − 1.

But µ = 1
m ∑n

i=1 zi =
SO(G)

m and thus, after replacing the above inequation, the left inequa-
tion (13) is obtained. On the right hand, we can apply the Corollary (2.13) in reference [23],
whereas all of the terms of the sequence z1, z2, . . . , zm are positive, which yields that

µ − m
√

z1 · z2 · . . . · zm ≤
√

m − 1 σ.

Again µ = 1
m ∑n

i=1 zi =
SO(G)

m and replacing in the above inequation, the right inequation is
obtained.

Definition 2.15. The arithmetic-harmonic mean inequality for nonnegative real numbers
x1, x2, x3, . . . , xm is as follow

Rh =
m

∑m
i=1

1
xi

≤ 1
m

m

∑
i=1

xi = Ra.

Using this inequality, we get the following theorem.

Theorem 2.16. Let G be a graph with n vertices and m edges such that wi for i = 1, 2, . . . , m be
degree-points pertained edges. Then for the nonnegative numbers z1, z2, . . . , zm,

mRh ≤ SO(G),

and the equality holds whenever z1 = z2 = . . . = zm.

In Theorem 2.28, limm→∞
mRg

SO(G)
is calculated in random graphs.

In Example 3.1, the upper and lower bounds, expressed in terms of βi, are adjusted by
varying the β vector, and the conditions relative to the Sombor index are evaluated.

In [7], the well-known bounds for the Sombor index based on the minimum (δ) and the
maximum (∆) degree introduce as

√
2nδ2

2 ≤ SO(G) ≤
√

2n∆2

2 . This algebraic approach gives a
general estimate of the Sombor index, but it does not give the finer structural details of the
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graph or does not reflect the degree distribution throughout the graph. Therefore, while it
is useful as a big approximation, it may overestimate the Sombor index, especially in graphs
where the degrees vary significantly across vertices.

The triangle inequality and Cauchy-Schwarz inequality are two key tools in deriving upper
and lower bounds for the Sombor index of a graph. They provide a geometric perspective
on degree of vertices, particularly through the Euclidean distance between degree-points of
edges in a graph.

As one can see the distance between two d-points w1 = (d(u1),d(v1)) and w2 = (d(u2),d(v2))

is

|w1 − w2| =
√
(d(u1)− d(u2))2 + (d(v1)− d(v2))2

and it gives us a lower bound for the sum of absolute values of degree-points and states
that for any two points in the degree-coordinate, the distance between them is less than or
equal to the sum of the distances from each point to a third point. In mathematical terms, the
triangle inequality is expressed as, |w1 + w2| ≤ |w1|+ |w2|. It can be generalized to more than
two points, w1, w2, . . . , wm as |w1 +w2 + . . .+wm| ≤ |w1|+ |w2|+ . . .+ |wm| for m = 2, 3, · · · .

The basis for obtaining many upper bounds in various areas of mathematics is the Cauchy-
Schwarz inequality. We find an upper bound by it for the Sombor index of the graph G.

The Cauchy-Schwarz inequality for real numbers xi and yi (i = 1, 2, . . . , n) is stated as

(
m

∑
i=1

xiyi)
2 ≤ (

m

∑
i=1

x2
i ).(

m

∑
i=1

y2
i ) (14)

and for two increasing sequences {xi}n
i=1 and {yi}n

i=1 is stated as

(
m

∑
i=1

xi)(
m

∑
i=1

yi) ≤ m
m

∑
i=1

xiyi. (15)

Theorem 2.17. Let G be a connected graph with n vertices and m edges. Then

|w1 + w2 + . . . + wm| ≤ SO(G) ≤
m

∑
i=1

√
2(z2

i − d(ui)d(vi)),

where w1,w2, . . . ,wm are the degree-points for all edges in the graph.

Proof. Based on the triangle inequality and its generalization

SO(G) = ∑
uv∈E(G)

√
d2(u) + d2(v) = z1 + z2 + . . . + zm

= |w1|+ |w2|+ . . . + |wm| ≥ |w1 + w2 + . . . + wm|.

For the right inequality, using (2), (d(u) + d(v))2 ≤ (
√

2|w|)2 = (
√

2z)2 and hence

d2(u) + d2(v) ≤ 2z2 − 2d(u)d(v),

which implies SO(G) ≤ ∑m
i=1

√
2(z2

i − d(ui)d(vi)).
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Theorem 2.18. Let w1, w2, . . . , wm be d-points of graph G1 with Euclidean distances z1 > z2 >

. . . > zm and s1, s2, . . . , sm be d-points of graph G2 with Euclidean distances z′1 > z′2 > . . . > z′m.
Then

m

∑
i=1

zi. z′i ≤ SO(G1).SO(G2) ≤ m
m

∑
i=1

zi. z′i.

Proof. For the left-hand inequality, consider ai =
4
√

d2(u) + d2(v) in G1. Then zi = a2
i =

( 4
√

d2(u) + d2(v))2 =
√

d2(u) + d2(v) and in result ∑m
i=1 zi = ∑m

i=1 a2
i = SO(G1) and in G2

consider bi =
4
√

d2(u) + d2(v), then z′i = b2
i = ( 4

√
d2(u) + d2(v))2 =

√
d2(u) + d2(v) and in

result ∑m
i=1 z′i = ∑m

i=1 b2
i = SO(G2). Based on the above relations and Inequality (14), we have

m

∑
i=1

zi.z′i ≤ (
m

∑
i=1

(zi.z′i)
1
2 )2 = (

m

∑
i=1

z
1
2
i .z′

1
2
i )

2 = (
m

∑
i=1

aibi)
2 ≤ (

m

∑
i=1

a2
i )(

m

∑
i=1

b2
i )

= (
m

∑
i=1

√
d2(u) + d2(v))(

m

∑
i=1

√
d2(u) + d2(v))

= SO(G1).SO(G2).

For the right-hand inequality, by inequality (15), it is concluded that for the nonnegative
numbers zi and z′i (i = 1, 2, . . . ,m) if z1 > z2 > . . . > zm and z′1 > z′2 > . . . > z′m, then

(
m

∑
i=1

zi)(
m

∑
i=1

z′i) ≤ m
m

∑
i=1

zi. z′i ⇒ SO(G1).SO(G2) ≤ m
m

∑
i=1

zi. z′i.

Therefore
m

∑
i=1

zi. z′i ≤ SO(G1).SO(G2) ≤ m
m

∑
i=1

zi. z′i.

Definition 2.19. [5] If f : Rn → R is a norm, and 0 ≤ θ ≤ 1, then

f (θx + (1 − θ)y) ≤ f (θx) + f ((1 − θ)y) = θ f (x) + (1 − θ) f (y),

is named Jensen’s inequality and it follows from the triangle inequality, and the equality follows from
the homogeneity of a norm.
The inequality extends to infinite sums, integrals, and expected values.

Definition 2.20. [5] Assume that f is twice differentiable, that is, second derivative ∇2 f exists at
each point in dom f , which is open, then

1. f is convex if and only if its dom is convex and second derivative ∇2 f (x) ≥ 0 (positive
semidefinite) for all x ∈ dom f . For functions on R, this reduces to f ′′(x)≥ 0, implying the derivative
is nondecreasing.

2. Similarly, f is concave if ∇ f (x) ≤ 0 for all x ∈ dom f . Strict convexity can be partially char-
acterized by the condition ∇2 f (x) > 0, although the converse is not always true.
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Theorem 2.21. Let G be a graph with the Z = {z1, z2, . . . , zm} and the Sombor index SO(G). Then

SO(G) =
m

∑
i=1

zi ≤ m ·
(

1
m

m

∑
i=1

zr
i

)1/r

, (16)

in which
(

1
m ∑m

i=1 zr
i

)1/r
is named generalized mean or power mean and displayed by

Mr(z1, z2, . . . , zm).

Proof. Given G be a graph with the degree points W = {w1, w2, · · · , wm} and Euclidean
distances Z = {z1, z2, . . . , zm}, formed by zi = |wi| =

√
d(u)2 + d(v)2 then it is aimed to

bound SO(G) using Jensen’s inequality. For this means, it is proved that the function f (wi) =

|wi|r = zr
i is convex, where zi = |wi| =

√
d(ui)2 + d(vi)2 is the Euclidean norm for r ≥ 2.

Therefore, it is proved that f ′′(wi) is nonnegative. For simplicity, the function is rewriting
as f (wi) =

(
d(ui)

2 + d(vi)
2)r/2 . This can be treated as the function f (x) = xr/2, where x =

d(ui)
2 + d(vi)

2. Thus, the convexity of f (x) = xr/2 is equivalent to proving the convexity of
f (wi) = |wi|r = zr

i . The convexity condition is given by using second derivative f (x) = xr/2.
So, f ′(x) = r

2 x(r/2)−1, then f ′′(x) = r
2 ·
( r

2 − 1
)

x(r/2)−2 (the function f (x) = xr/2 is convex if
f ′′(x) ≥ 0 for all x ≥ 0). For r ≥ 2, we have r

2 − 1 ≥ 0, which means the second derivative
is nonnegative for all x ≥ 0. Thus, f ′′(x) = r

2 ·
( r

2 − 1
)

x(r/2)−2 ≥ 0. So, the function f (wi) =

|wi|r = zr
i , where zi = |wi| =

√
d(ui)2 + d(vi)2, is convex.

Now, Jensen’s inequality states that for a convex function f (x), the function evaluated at
the mean is less than or equal to the mean of the function, in other words, f ( 1

m ∑m
i=1 xi) ≤

1
m ∑m

i=1 f (xi). Applying Jensen’s inequality to the convex function f (wi) = |wi|r = zr
i , and for

r ≥ 2 we have: (
1
m

m

∑
i=1

zi

)r

≤ 1
m

m

∑
i=1

zr
i .

Now taking the r-th root on both sides, we obtain

1
m

m

∑
i=1

zi ≤
(

1
m

m

∑
i=1

zr
i

)1/r

and thus

m

∑
i=1

zi ≤ m.

(
1
m

m

∑
i=1

zr
i

)1/r

.

Finally, we have

SO(G) ≤ m · Mr(z1, z2, . . . , zm). (17)
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Note that in the inequality 16, if r = 2, it takes the form SO(G) ≤
√

mF(G), which is
satated in the inequality 6.

Now we are going to present some concepts related to random variables. A random variable,
see [28], is a real-valued function defined over a sample space. A random variable Z is said
to be discrete if it can assume only a finite or countably infinite number of distinct values. A
random variable Z that can take on any value in an interval is called a continuous random
variable.

Definition 2.22 (Expected value). [16] If Z is a discrete random variable and f (z) is the value of
its probability distribution at z, the expected value of Z is E[Z] = ∑z z · f (z). Correspondingly, if Z is
a continuous random variable and f (z) is the value of its probability density at z, the expected value
of Z is E[Z] =

� ∞
−∞ z · f (z).

Definition 2.23 (Standard distribution). [16] If the random variable Z has the mean µ and the
standard deviation σ, then the random variable X whose values are related to those of Z by means
of the equation x = z−µ

σ has E(X) = 0 and var(X) = 1. A distribution that has the mean 0 and the
variance 1 is said to be in standard form, and when we perform the above change of variable, we are
said to be standardizing the distribution of Z.

Theorem 2.24 (Standardized Sombor index ). Let G be a graph with m edges, and Z(wi) :=√
d(ui)2 + d(vi)2 be the random variable related to the graph as degree-points wi = (d(ui),d(vi)).

Define the standardized values of zi as xi =
zi−µ

σ . Then the standardized Sombor index SOst(G) =

∑m
i=1 xi satisfies the following inequality

SOst(G) =
m

∑
i=1

xi ≤ m.

(
1
m

m

∑
i=1

xr
i

)1/r

= m · Mr(x1, x2, . . . , xm).

Proof. By substituting xi in inequality (16), the proof is clear.

Theorem 2.25 (Mean Sombor index). Let G be a graph with m edges, Z be the random variable
related to the graph and µ be mean of zi’s. Define the standardized values of zi as xi =

zi−µ
σ , where

µ is the mean of the z′is and σ is their standard deviation. Then the mean Sombor index SOµ(G) :=
∑m

i=1 |zi − µ| satisfies the following inequality:

SOµ(G) =
m

∑
i=1

|zi − µ| ≤ m ·
(

1
m

m

∑
i=1

|zi − µ|r
)1/r

= m · Mr(z1 − µ,z2 − µ, . . . ,zm − µ)

Proof. Starting from the generalized mean inequality for the standardized variables and by
Jensen’s inequality: (

1
m

m

∑
i=1

xi

)r

≤ 1
m

m

∑
i=1

xr
i .

Substituting xi =
zi−µ

σ , we obtain
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(
1
m

m

∑
i=1

|zi − µ

σ
|
)r

≤ 1
m

m

∑
i=1

|zi − µ

σ
|r.

Now, simplifying both sides:
- The left-hand side becomes:(

1
m

m

∑
i=1

|zi − µ|
σ

)r

=
1
σr

(
1
m

m

∑
i=1

|zi − µ|
)r

.

-The right-hand side becomes:

1
m

m

∑
i=1

(
|zi − µ|

σ

)r

=
1
σr ·

1
m

m

∑
i=1

|zi − µ|r.

Now substituting back,

1
σr

(
1
m

m

∑
i=1

|zi − µ|
)r

≤ 1
σr ·

1
m

m

∑
i=1

|zi − µ|r

Multipling both sides by σr (assuming σ ̸= 0):(
1
m

m

∑
i=1

|zi − µ|
)r

≤ 1
m

m

∑
i=1

|zi − µ|r.

Finally, taking the r−th root of both sides results in

1
m

m

∑
i=1

|zi − µ| ≤
(

1
m

m

∑
i=1

|zi − µ|r
) 1

r

and in result,

SOµ(G) ≤ m ·
(

1
m

m

∑
i=1

|zi − µ|r
) 1

r

.

Therefore, the mean Sombor index, SOµ(G), is less than or equal to the r−th root of the mean
of the r−th powers of the absolute deviations, |zi − µ|, scaled by the coefficient m for all i
from 1 to m.

A powerful tool for solving many problems in discrete mathematics is the probabilistic
method. In this method, it tried to prove certain desired properties for a structure hold by
defining an appropriate probability with positive probability. An active area of research that
combines probability theory and graph theory is the area of random graphs.

Based on the [15], a random graph is generated by a random procedure formalized through
a probability space (Ω, F, P), and its distribution refers to the induced probability distribution
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on the family of graphs. Graphs with the same distribution are usually considered equiva-
lent. For the study of random graphs, two basic models have introduced: the binomial model
and the uniform model, both rooted in the simple model was introduced by Erdös (1947).

The binomial random graph G(n, p) is defined on n vertices where each possible edge be-
tween vertex pairs happens independently with probability p and the probability of observ-
ing a particular graph G with m edges is P(G) = pm(1 − p)(

n
2)−m. It is often interpreted as

the result of an independent coin flips for each vertex pair of edge inclusion. The number of
edges is based on a binomial distribution with expected value (n

2)p. In this model of graphs,
the number of edges is not fixed and independence edges is the main advantage of the bino-
mial model G(n, p).

In the uniform random graph model G(n, M), where a graph is chosen uniformly at random
from the set of all graphs with n vertices and exactly M edges. The probability of selecting

any specific graph G with M edges from this space is ((
n
2)

M )
−1

. The number of edges in this
model directly fixed at M.

There are other models for the random graphs which aren’t in these models (binomial or
uniform). A stochastic process where a graph evolves over time by adding edges is named a
random graph process, either in discrete or continuous time, without removing any. The graph
starts with no edges and grows according to predefined rules on a fixed vertex set.

A well-known random graph process introduced by Erdös-Rényi (1959). It starts with no
edges and adds new edges uniformly at random, one at a time. This process is a Markov
process where the M−th stage corresponds to the uniform random graph G(n, M), with M
edges.

The Continuous time random graph process assigns a random variable Te to each edge e of
the complete graph Kn, where the (n

2) variables Te are independent and follow a common
continuous distribution and then define the adge set {G(t)}t containing of all e with Te ≤ t.
The resulting random graph {G(t)}t0 in a fix point t0 is identified with the binomial random
graph G(n, p) with p = P(Te ≤ t).

Also, no two values of the random variables Te as almost surly coincide, we may de-
fine T(i) as the random time at which the i−th edge is added. Then, by symmetry, G(Ti)

is the uniform random graph G(n, i), and the sequence G(Ti) for i = 1, · · · , (n
2), equals the

ordinary random graph process G(n, M)M defined above. Hence, this continuous time ran-
dom graph process is a joint generalization of the binomial random graph, the uniform ran-
dom graph and the standard discrete-time random graph process. Clearly, different choices
of the distribution of Te affect the model only trivially, by a change in the time variable.
The continuous time evolving model was introduced by Stepanov (1970) with Te exponen-
tially distributed; we prefer the uniform distribution over the interval [0,1], in which case
p = P(Te ≤ t) = t,0 ≤ t ≤ 1. Thus, we may unambiguously use the notation G(n, t)t.

Now, we state Theorem (2.28) about the Sombor index of random graphs with continuous
time random graph process, but previous of it we state some nesseserlies:

Lemma 2.26 (The weak law of large numbers (LLN)). [24] Let Z1, Z2, · · · , Zm be a sequence of
independent and identically distributed (i.i.d) random variables, each having finite mean E(Zi) = µ.
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Then, for any ϵ > 0, limm→∞ P(Z1+Z2+...+Zm
m − µ ≥ ϵ) = 0.

Definition 2.27 (Euler’s constant). [19] Constant γ discoverd by Euler, defined by
γ := limn→∞(∑n

j=1
1
j − logn) and called Euler’s constant. It is to 50 decimal places as

γ = 0.57721566490153286060651209008240243104215933593992 · · ·

and as well e−γ = 0.561459 · · · .

Theorem 2.28. Let G(n, p) be a random Erdös-Rényi graph with n vertices and m edges, where each
edge exists independently with probability p. The waiting time for the creation of each edge follows
countinuous time random graph process. Then, as m → ∞, we have the following convergence result

lim
m→∞

rm(Z) = e−γ,

where rm(Z) = mRg
SO(G)

, Rg is the geometric mean of zi’s and γ is the Euler’s constant.

Proof. Since the waiting time for the creation of each edge follows a continuous time random
graph process, so we could use the exponential distribution with rate parameter λ, the prob-
ability density function of Z with fλ(z) = λe−λz,z > 0 and the expected value of Z, E[Z] = 1

λ .
At first, compute the expected value of the logarithm of Z, i.e., E[lnZ]. This is calculated

as:

E[lnZ] =
� ∞

0
ln(z) fZ(z)dz =

� ∞

0
ln(z)λe−λzdz = λ

� ∞

0
ln(z)e−λzdz.

With considering a change of variable as u = λz, du = λdz, and thus dz = du
λ the integral

becomes:

E[lnZ] = λ

� ∞

0
ln(

u
λ
)e−u du

λ
=

� ∞

0
(ln(u)− ln(λ))e−udu

=

� ∞

0
(ln(u))e−udu −

� ∞

0
(ln(λ))e−udu

=

� ∞

0
(ln(u))e−udu − ln(λ) = −γ − ln(λ).

Hence
E[lnZ] = −γ − ln(λ),

where γ is Euler’s constant (approximately 0.5772).
Now whereas Rg = (∏m

i=1 zi)
1
m = exp( 1

m ∑m
i=1 zi), so lnRg =

1
m ∑m

i=1 ln(zi). By the law of
large numbers, as m → ∞, the average converges to the expected value:

lim
m→∞

P(| 1
m

m

∑
i=1

ln(zi)− E[ln(Z)]| ≥ ϵ) = 0.
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Thus

lim
m→∞

P(| 1
m

m

∑
i=1

ln(zi)− E[ln(Z)]| < ϵ) = 1

and so
lim

m→∞
P(|lnRg − E[ln(Z)]| < ϵ) = 1.

So, while ϵ > 0 can be arbitrarily small, in the limit, the actual difference between the two
is essentially zero with the probability 1. Therefore,

lim
m→∞

P(|lnRg − E[ln(Z)]| < ϵ) = 1 iff lim
m→∞

P(|Rg − eE[ln(Z)]| < ϵ) = 1

iff lim
m→∞

P(|Rg − e−γ−ln(λ)| < ϵ) = 1 iff lim
m→∞

Rg = e−γ−ln(λ)

iff lim
m→∞

Rg =
e−γ

eln(λ)
iff lim

m→∞
Rg =

e−γ

λ
. (18)

Also by using again of the LLN

lim
m→∞

P(| 1
m

m

∑
i=1

zi − E[Z]| ≥ ϵ) = 0 iff lim
m→∞

P(| 1
m

m

∑
i=1

zi − E[Z]| < ϵ) = 1

iff lim
m→∞

1
m

m

∑
i=1

zi = E[Z]. (19)

Now with attention to Equation (19), the E[∑m
i=1 zi] = ∑m

i=1 E[zi] = m.E[Z] and using LLN

lim
m→∞

P(|
m

∑
i=1

zi − mE[Z]| ≥ ϵ) = 0 iff lim
m→∞

P(|SO(G)− mE[Z]| ≥ ϵ) = 0

iff lim
m→∞

P(|SO(G)− mE[Z]| < ϵ) = 1 iff lim
m→∞

SO(G) = m.E[Z]

iff lim
m→∞

SO(G) = m
1
λ

. (20)

So by rm(z) =
mRg

SO(G)
, and Equations (18) and (20), it is resulted

lim
m→∞

P(|
m.Rg

SO(G)
−

m. e−γ

λ

m. 1
λ

| ≥ ϵ) = 0 iff lim
m→∞

p{|rm(z)− e−γ| ≥ ϵ} = 0

iff lim
m→∞

p(|rm(z)− e−γ| < ϵ) = 1 iff lim
m→∞

rm(z) = e−γ

and hence,

lim
m→∞

rm(z) = e−γ.

As a final result at this part, we apply Markov’s inequality to derive an inequality for the
Sombor index:
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Lemma 2.29 (Markov’s inequality). [16] If Z is a random variable with the mean µ for which
f (z) = 0 (probability density function or probability distribution function of Z ) for z < 0, then for
any positive constant a,

P(Z ≥ a) ≤ µ

a
.

Theorem 2.30. Let G be a graph with the set of degree-radii Z = {z1, z2, . . . , zm} as a random
variable. Then for any positive constant a,

P(Z ≥ a) ≤ SO(G)

a.m
.

Proof. Whereas for the graph G with the random variable Z = {z1,z2, · · · ,zm}, f (z) = 0 for
z < 0, so it is enough to put µ = 1

m ∑m
i=1 zi =

SO(G)
m in the Markov’s inequality.

Open Problem 2.31. Consider a graph G with m = 100 edges, a known Sombor index SO(G) =

300 and the random variable Z = {z1,z2, . . . ,zm}. Assume a positive constant a = 5. Determine the
probability that Z is greater than or equal to a.

Based on the theorem, we have:
P(Z ≥ a) ≤ SO(G)

a·m = 300
5·100 = 3

5 . Thus, the probability that Z is greater than or equal to 5 is at
most 3

5 .

Now, we determine some bounds for the Sombor index by coefficients of the arithmetic-
geometric and geometric-arithmetic indices applied in mathematical chemistry and you could
see them in the articles [30], [8] and [6]. Also, in reference [29], the authors survey the corre-
lation between the Sombor index and other degree-based topological indices.

Definition 2.32 (The arithmetic-geometric (AG) and geometric-arithmetic (GA) index). Two
important topological indices applied in the chemical graph theory and are stated in [6] and [26] are
the AG index and GA index which are defined as follows,

AG(G) = ∑
uv∈E(G)

1
2
(

√
d(u)
d(v)

+

√
d(v)
d(u)

) = ∑
uv∈E(G)

1
2
(d(u) + d(v)√

d(u)d(v)

)
,

and

GA(G) = ∑
uv∈E(G)

(2
√

d(u)d(v)
d(u) + d(v)

)
.

Considering the reference [26], it is proved that

GA(G) ≤ AG(G).

Also, note that

AG(G) ≤ SO(G),
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because for each edge e = uv ∈ E(G),

d(u) + d(v)
2
√

d(u)d(v)
≤ d(u) + d(v)

2
≤ d(u) + d(v)√

2
≤
√

d2(u) + d2(v).

So ∑m
i=1

d(u)+d(v)
2
√

d(u)d(v)
≤ ∑m

i=1

√
d2(u) + d2(v) and hence AG(G) ≤ SO(G).

Now we are going to improve the above bound.

Theorem 2.33. Let G be a graph with n vertices, m edges and with a maximum degree ∆ and mini-
mum degree δ, then

√
2δAG(G) ≤ SO(G) ≤

√
2∆AG(G).

Proof. For obtaining the lower bound and upper bound, consider the following function

f (x,y) =
√

x2 + y2

x+y
2
√

xy

=
2
√

x3y + y3x
x + y

where 1 ≤ δ ≤ x,y ≤ ∆. Therefore

∂ f
∂x

=
(x3y + y3x)(3x2y + y3)(x + y)− 2

√
x3y + y3x

(x + y)2 ≥ 0 and also
∂ f
∂y

≥ 0.

It follows that f (x,y) is an increasing function on the variables x and y. Thus, the function
obtains its minimum at the point (δ,δ) and it’s maximum at the point (∆,∆). It is concluded
that

f (δ,δ) ≤ f (x,y) ≤ f (∆,∆)⇒
√

2δ ≤ f (x,y) ≤
√

2∆

⇒
√

2δ
x + y
2
√

xy
≤
√

x2 + y2 ≤
√

2∆
x + y
2
√

xy

So for the set of edges {e1 = u1v1, e2 = u2v2, · · · ,umvm},

√
2δ

m

∑
i=1

dui + dvi

2
√

dui dvi

≤
m

∑
i=1

√
d2

ui
+ d2

vi
≤

√
2∆

m

∑
i=1

dui + dvi

2
√

dui dvi

and hence
√

2δAG(G) ≤ SO(G) ≤
√

2∆AG(G).

Theorem 2.34. Let G be a graph with n vertices and m edges, then

GA(G) < SO(G).

Proof. Base on the Inequality (3) for each edge e = uv ∈ E(G),
√

d(u).d(v) ≤ d(u)+d(v)
2 .

So 2
√

d(u).d(v)
d(u)+d(v) ≤ 1, and since

√
d2u + d2v > 1,

∑
uv∈E(G)

2
√

d(u).d(v)
d(u) + d(v)

< ∑
uv∈E(G)

√
d2(u) + d2(v)⇒ GA(G) < SO(G).
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Now we are going to improve this bound.

Theorem 2.35. Let G be a graph with n vertices and m edges, then
√

2δGA(G) ≤ SO(G) ≤
√

2(∆)GA(G)

Proof. Consider the following function

f (x,y) = (

√
x2 + y2

2
√

xy
x+y

)2 =
(x2 + y2)(x + y)2

4xy
,

where 2 ≤ δ ≤ x ≤ y ≤ ∆. By using a proof similar to that of Theorem 2.33, the statement can
be proven.

Based on the reference [27], the symmetric division deg index (SDD(G)) is another in-
dex for predicting some physicochemical properties of substances, and the International
Academy of Mathematical Chemistry carries out its test, so here we want to pay a little at-
tention to it and compare it with Sombor index:

Definition 2.36 (The symmetric division deg index (SDD(G))). For the graph G, the symmetric
division deg index SDD(G) is defined as

SDD(G) =
m

∑
i=1

(
d(u)
d(v)

+
d(v)
d(u)

) =
m

∑
i=1

d2(u) + d2(v)
d(u)d(v)

.

Theorem 2.37. Let G be a graph with n vertices and m edges, then
√

2
2

δSDD(G) ≤ SO(G) ≤
√

2
2

∆SDD(G).

Proof. Consider the following function

f (x,y) =
xy√

x2 + y2

where 1 ≤ δ ≤ x ≤ y ≤ ∆. Then ∂ f
∂x ≥ 0 and ∂ f

∂x ≥ 0. This means that f (x,y) is an increasing
function on x and y and gives its minimum at the point (δ,δ) and it’s maximum at point
(∆,∆). So f (δ,δ) ≤ f (x,y) ≤ f (∆,∆) which deduces that

√
2

2
δ

x2 + y2

xy
≤
√

x2 + y2 ≤
√

2
2

(∆)
x2 + y2

xy

⇒
√

2
2

δ
m

∑
i=1

x2 + y2

xy
≤

m

∑
i=1

√
x2 + y2 ≤

√
2

2
(∆)

m

∑
i=1

x2 + y2

xy
.

Thus
√

2
2 δSDD(G) ≤ SO(G) ≤

√
2

2 ∆SDD(G).
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3 Applications

Example 3.1. Consider a simple graph G with 5 edges and 5 vertices as it is given in Figure (1).
Assume that each edge is assigned a weight βi > 0, such that ∑m

i=1 βi = 1. Find the upper and lower
bounds of SO(G) in the following conditions:

(i) Using the inequalities derived from Theorem (2.4) and for
β = (0.2, 0.3, 0.2, 0.2, 0.1),
β′ = (0.1, 0.3, 0.2, 0.2, 0.2).

Figure 1. The weighted graph G with the edge weight vectors β = (0.2, 0.3, 0.2, 0.2, 0.1) and
β′ = (0.1, 0.3, 0.2, 0.2, 0.2).

For this means, first, we have

z1 = z2 = z3 =
√

13, z4 =
√

5, z5 =
√

8 ⇒ SO(G) = 3 ·
√

13 +
√

5 +
√

8 = 15.88.

Rg = (
5

∏
i=1

zi)
1
5 = (

√
13 ·

√
13 ·

√
13 ·

√
5 ·

√
8)

1
5 = 3.12,⇒ 5 · Rg = 15.61.

Now, for β = (0.2, 0.3, 0.2, 0.2, 0.1) :

5

∑
i=1

βizi = 0.2 ·
√

13 + 0.3 ·
√

13 + 0.2 ·
√

13 + 0.1 ·
√

5 + 0.2 ·
√

8 = 3.31,

5

∏
i=1

zβi
i =

√
13

0.2
+
√

13
0.3

+
√

13
0.2

+
√

5
0.1

+
√

8
0.2

= 3.27,

so based on Theorem (2.4):
the lower bound is

1
βmax

(
5

∑
i=1

βizi −
5

∏
i=1

zβi
i ) + 5 · Rg =

1
0.3

· (3.31 − 3.27) + 15.61 = 15.74, (21)

and upper bound is

1
βmin

(
5

∑
i=1

βizi −
5

∏
i=1

zβi
i ) + 5 · Rg =

1
0.1

· (3.31 − 3.27) + 15.61 = 16.01. (22)
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Now consider β′ = (0.1, 0.3, 0.2, 0.2, 0.2) :

5

∑
i=1

βizi = 0.1 ·
√

13 + 0.3 ·
√

13 + 0.2 ·
√

13 + 0.2 ·
√

5 + 0.2 ·
√

8 = 3.18,

5

∏
i=1

zβi
i =

√
13

0.1
+
√

13
0.3

+
√

13
0.2

+
√

5
0.2

+
√

8
0.2

= 3.12,

so based on Theorem (2.4), the lower bound is

1
βmax

(
5

∑
i=1

βizi −
5

∏
i=1

zβi
i ) + 5 · Rg =

1
0.3

· (3.18 − 3.12) + 15.61 = 15.81, (23)

and upper bound is

1
βmin

(
5

∑
i=1

βizi −
5

∏
i=1

zβi
i ) + 5 · Rg =

1
0.1

· (3.18 − 3.12) + 15.61 = 16.21. (24)

For explanation, we could note how the lower sombor index adjusts compared to the sombor index
SO(G) with changing the weights of the edges (costs), as shown by the comparison of Equations (21)
and (23). Similarly, we could note that how the upper sombor index adjusts compared to the sombor
index SO(G) with changing the weights of the edges (costs), as shown by the comparison of Equations
(22) and (24).

(ii) Using the inequality derived from Theorem (2.9):
We have

σ2(Z
1
2 ) =

1
m

m

∑
i=1

(z
1
2
i −

m

∑
i=1

z
1
2
k )

2 (25)

and so,

Z
1
2 = (

√
13

1
2 ,
√

13
1
2 ,
√

13
1
2 ,
√

5
1
2 ,
√

8
1
2 ),

1
5

5

∑
k=1

z
1
2
k =

1
5
(
√

13
1
2 +

√
13

1
2 +

√
13

1
2 +

√
5

1
2 +

√
8

1
2 ) =

1
5
(1.90+ 1.90+ 1.90+ 1.50+ 1.68) = 1.78.

Hence

σ2(Z
1
2 ) =

1
5

[
(
√

13
1
2 − 1.78)2 × 3 + (

√
5

1
2 − 1.78)2 + (

√
8

1
2 − 1.78)2

]
=

1
5
× 0.13 = 0.026.

Now by considering Inequalities (11), m(Rg + σ2(Z
1
2 )) ≤ SO(G) :

m(Rg + σ2(Z
1
2 )) = 15.61 + 0.13 = 15.74 ≤ 15.88 = SO(G).
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The result validates the inequality and shows how the variance of a transformed variable Z
1
2 and other

graph parameters (Rg) contribute to bounding SO(G)

(iii) Using the inequalities derived from Theorem (2.11):
With considering

σ2(Z) =
1
m

m

∑
i=1

(zi −
1
m

m

∑
k=1

zk)
2,

we have

µ =
1
m

5

∑
k=1

zk

and thus
µ =

1
5
(
√

13 × 3 +
√

8 +
√

5) = 3.18.

This means

σ2(Z) =
1
5

[
(
√

13 − 3.18)2 × 3 + (
√

8 − 3.18)2 + (
√

5 − 3.18)2
]
= 0.31,

and in result by Inequalities (12), m(Rg +
σ2(Z)
2M2

) ≤ SO(G) ≤ m(Rg +
σ2(Z)
2M1

) :

5(3.12 +
0.31

2 ×
√

13
) ≤ SO(G) ≤ 5(3.12 +

0.31
2 ×

√
5
)

⇒ 15.81 ≤ SO(G) ≤ 15.96.

(iv) Using the inequalities derived from Theorem (2.14):

σ =
√

σ2 =
√

0.31 = 0.56,

so by inequalities (13), m√
m−1

σ < SO(G) ≤ m(Rg +
√

m − 1 σ) :

5
2
× 0.56 ≤ SO(G) ≤ 5(3.12 + 2 × 0.56).

Thus
1.4 ≤ SO(G) ≤ 21.2.

Example 3.2. Let G(n, p) be a random graph with n = 5 vertices and m = 5 edges. If the degree-radii
follow a binomial distribution with probability p = 1

2 , and

Rg = 3.12, M1 =
√

5 and M2 =
√

13,

then find the lower and upper bounds for the Sombor index.
For a graph G with binomial distribution, the variance of degree-radii is given by σ2(Z) = np(1−

p). If each edge is selected with probability p = 1
2 , so by inequalities (12) of Theorem (2.11), we have

the lower bound

m(Rg +
σ2(Z)
2M2

) = 5(3.12 +
5 × 1

2(1 −
1
2)

2 ×
√

13
) = 16.47
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and the upper bound

m(Rg +
σ2(Z)
2M1

) = 5(3.12 +
5 × 1

2(1 −
1
2)

2 ×
√

5
) = 17.00.

So,
16.47 ≤ SO(G) ≤ 17.00.

Example 3.3. Consider the graph G with

z1 = z2 = z3 =
√

13, z4 =
√

8, z5 =
√

5.

Then using Inequality (11), survey the bounds for SO(G) by increasing r.
If r = 1, SO(G) = 5(1

5(3 ×
√

13 +
√

8 +
√

5)) = 15.88.
If r = 2, SO(G) ≤ 5 × (1

5 ∑5
i=1 z2

i )
1
2 then SO(G) ≤ 5 × (1

5(3 × 13 + 8 + 5))
1
2 = 16.12.

If r = 3, SO(G)≤ 5× (1
5 ∑5

i=1 z3
i )

1
3 then SO(G)≤ 5× (1

5(3×
√

13
3
+
√

8
3
+
√

5
3
))

1
3 = 16.34.

If r = 4, SO(G) ≤ 5 × (1
5 ∑5

i=1 z4
i )

1
4 then SO(G) ≤ 5 × (1

5(3 × 132 + 82 + 52)
1
4 = 16.52.

...
If r → ∞, SO(G) ≤ lim

r→∞
5 × (1

5 ∑5
i=1 zr

i )
1
r then SO(G) ≤ lim

r→∞
5 × (1

5(
√

13
r
)

1
r = 5

√
13 = 18.03

As you consider, the upper bound increases as we use higher values of r. In fact, the tighter bounds
are obtained from the lower-order means, and as r increases, the bounds become looser.

Example 3.4. Consider graph G with

z1 = z2 = z3 =
√

13, z4 =
√

8, z5 =
√

5.

Calculate SO(G), SOst, SOµ.
For this graph, we obtain σ = 0.56, µ = 3.18, and SO(G) = 15.88.

Now based on the definition SOst(G) in Theorem (2.4) we compute xi =
zi−µ

σ , which gives

z1 = z2 = z3 = 0.76, z4 = −0.63, z5 = −1.69 ⇒ SOst = −0.04.

Based on the definition SOµ(G) in Theorem (2.25), we have

SOµ(G) = 3|
√

13 − 3.18|+ |
√

8 − 3.18|+ |
√

5 − 3.18| = 2.57.

4 Conclusion

In this paper, we provide some tight and loos bounds for the Sombor index using topo-
logical and probebilistic methods. Additionally, a bound for comparing the Sombor index of
weighted graphs is introduced, using weights from a unit fraction.

Furthermore, we examine the ratio

m.Rg

SO(G)
,
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in regular graphs and Erdös-Rényi random graphs, and prove that in regular graphs this
value equals one, while in Erdös-Rényi random graphs, as m tends to infinity, this value
approaches e−γ. This enables us to uncover certain structural and molecular properties of
chemical graphs and predict some of them.
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