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Abstract. A Roman dominating function on a graph G = (V, E) is a function f : V(G)→ {0,1,2}
satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for
which f (v) = 2. The weight of a Roman dominating function is the value f (V) = ∑u∈V(G) f (u). The
minimum possible weight of a Roman dominating function on G is called the Roman domination
number of G and is denoted by γR(G). In this paper, and among some other results, we provide some
bounds for the Roman domination number of the subdivision graph S(G) of an arbitrary graph G.
Also, we determine the exact value of γR(S(G)) when G is Kn, Kr,s or Kn1,n2,...,nk .
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1 Introduction and preliminaries

Let G = (V(G), E(G)) be a simple, finite and undirected graph. The open neighborhood of a
vertex v ∈V(G), denoted by NG(v), is the set of vertices adjacent to v in G. For each S ⊆V(G),
NG(S) is defined as ∪v∈SNG(v) and the induced subgraph of G on the set S (denoted by G[S])
is a subgraph of G with the vertex set S in which two vertices u,v ∈ S are adjacent just when
they are adjacent in G. The closed neighborhood of a vertex v in G is NG[v] = NG(v) ∪ {v}.
The degree of a vertex v ∈ V(G) is degG(v) = |NG(v)|. The maximum degree and minimum
degree are denoted by ∆(G) and δ(G), respectively. A vertex is called universal if its degree is
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|V(G)| − 1. A subset S of V(G) is a dominating set for G if each vertex in V(G) \ S is adjacent to
at least one vertex in S. The domination number of G, denoted by γ(G), is the minimum size of
a dominating set of G. Recently, the concept of domination is expanded to other parameters
of domination such as k−rainbow domination and Roman domination. Let f : V → {0,1,2}
be an arbitrary function and for each i ∈ {0,1,2}, let Vi = {v ∈ V| f (v) = i} and ni = |Vi|.
These sets determine the function f and hence, one can write f = (V0,V1,V2). Function f =
(V0,V1,V2) is a Roman dominating function, abbreviated RDF, for G if V0 ⊆ NG(V2). If v ∈ V0

and u ∈ NG(v)∩ V2, then we say that u satisfies (or defends) v. The Roman domination number
γR(G) is the minimum weight of an RDF of G, and we say a function f = (V0,V1,V2) to be a
γR− function if it is an RDF for G and f (V) = γR(G). In recent years much attention drawn
to the domination theory which is an interesting branch in graph theory. Cockayne et al.

in [7] have shown that for any graph G of order n and maximum degree ∆,
2n

∆ + 1
≤ γR(G),

and for the classes of paths Pn and cycles Cn, γR(Pn) = γR(Cn) = ⌈2n
3
⌉. Also they have stated

that for the complete k-partite graph Kn1,n2,...,nk with n1 ≥ n2 ≥ ... ≥ nk we have

γR(Kn1,n2,...,nk) =

{
nk + 1 i f 1 ≤ nk ≤ 2
4 otherwise.

Also in [7] it is shown that for each graph G, γ(G) ≤ γR(G) ≤ 2γ(G) and the lower bound is
achieved only when G = Kn. The Roman domination problem for Johnson graphs is consid-
ered in [11]. For further details on Roman domination and its variations we refer the reader
to the book chapters [3, 4], surveys [5, 6] and the article [10].

The subdivision operation of G is an operation in G that replaces any edge by a path and
the resulting graph of this operation is called the subdivision graph. If each edge is replaced
by a path of length two, then the subdivision graph is denoted by S(G). Note that V(G) ⊆
V(S(G)), |V(S(G))| = |V(G)| + |E(G)|, |E(S(G))| = 2|E(G)| and each vertex in V(S(G)) \
V(G) has degree two. Domination number and identifying code number of the subdivision
of some graphs are investigated and determined in [1]. In [9] some bounds for the 2−rainbow
domination number of the subdivision graph S(G) of a graph G is obtained and the exact
value of the 2−rainbow domination number of each tree and some other families of graphs
is determined. Some algebraic properties of the subdivision graph of a graph have been
studied in [8]. In [2] it is proved that the maximum nullity is equal to the zero forcing number
for all complete subdivision graphs.

In this paper, we provide some upper bounds for the Roman domination number of the
subdivision of a graph regarding its matchings, connected components and diameter. Also,
we provide some tight upper bonds for trees and bipartite graphs. Then we determine the
exact value of the Roman domination number of S(Kn), S(Kr,s) and S(Kn1,n2,...,nk).

322



Salkhori et al. / Journal of Discrete Mathematics and Its Applications 9 (2024) 321–333

2 Main Results

First of all, we provide some (sharp) bounds for the Roman domination number of the
subdivision of an arbitrary graph G. In each one, the bound will be attained when G is equal
to its mentioned induced subgraph.

Proposition 2.1. Let t ∈ N be an integer and H = tK2 be an induced subgraph of an n-vertex graph
G. Then we have γR(S(G)) ≤ 2(n − t).

Proof. Define the function f : V(S(G))→ {0,1,2} as

f (v) =
{

2 v ∈ (V(S(H)) ∪ V(G)) \ V(H)

0 otherwise.

Since H is an induced subgraph of G, we will find out by checking that f is an RDF for S(G)

and hence,
γR(S(G)) ≤ w( f ) = 2t + 2(n − 2t) = 2n − 2t.

Corollary 2.2. Let G be a graph of order n ≥ 2. Then γR(S(G)) ≤ 2n − 2.

Proof. If E(G) =∅, then S(G) = G and the function f : V(S(G))→{0,1,2} defined by f (v) = 1
for each v ∈ V(S(G)) = V(G), is an RDF and hence

γR(S(G)) = γR(G) ≤ w( f ) = n ≤ 2n − 2.

Thus assume that E(G) ̸= ∅ and hence, K2 is an induced subgraph of G. Now the result
follows directly from Proposition 2.1.

Corollary 2.3. Let G be a graph of order n ≥ 2 with s isolated vertices and t connected components
of order at least two. Then γR(S(G)) ≤ 2(n − t)− s.

Proof. Choose one edge from each connected component of order at least two to constract an
induceed tK2 in G and consider the function f : V(S(G)) → {0,1,2} as defined in the proof
of Proposition 2.1 by modifying it for each isolated vertex v ∈ V(G) as f (v) = 1. Then f is an
RDF with weigh w( f ) = 2((n − s)− t) + s = 2(n − t)− s.

Proposition 2.4. If t ≥ 2 and the path Pt be an induced subgraph in an n-vertex graph G, then
γR(S(G)) ≤ 2(n − t) +

⌈
4t−2

3

⌉
.

Proof. Since S(Pt) = P2t−1 we have γR(S(Pt)) =
⌈

2(2t−1)
3

⌉
. Let f : V(S(P2t−1)) → {0,1,2} be

an optimal RDF for P2t−1 and define the function g : V(S(G))→ {0,1,2} as

g(v) =


f (v) v ∈ V(S(P2t−1))

2 v ∈ V(G) \ V(Pt)

0 otherwise.

Since Pt is an induced subgraph of G, g is an RDF for S(G) and hence,

γR(S(G)) ≤ w(g) = 2(n − t) +
⌈

4t − 2
3

⌉
.
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Corollary 2.5. For each n-vertex graph G with diameter d, we have

γR(S(G)) ≤ 2(n − d − 1) +
⌈

4d + 2
3

⌉
.

Now in the following result we provide an upper bound for the Roman domination num-
ber of the subdivision of an arbitrary bipartite graph G. We will use it for determining the ex-
act value of the Roman domination number of the subdivision of complete bipartite graphs.

Proposition 2.6. Let G be a bipartite graph with partite sets X and Y in which |X| ≤ |Y|. Then we
have γR(S(G)) ≤ 2|X|+ |Y|.

Proof. It is straightforward to check that the function f : V(S(G))→ {0,1,2} defined as

f (v) =


2 v ∈ X
1 v ∈ Y
0 otherwise,

is an RDF for S(G) and hence, γR(S(G)) ≤ w( f ) = 2|X|+ |Y|.

Since each n-vertex tree is a bipartite graph and the size of its biggest part is at least
⌈n

2

⌉
,

the following result directly follows.

Corollary 2.7. Let T be an n-vertex tree. Then, γR(S(T)) ≤ n +
⌊n

2

⌋
.

In the following result we determine the exact value of the Roman domination number of
the subdivision of each complete graph.

Theorem 2.8. For each n ≥ 2 we have γR(S(Kn)) = 2n − 2.

Proof. Since n ≥ 2 and K2 is an induced subgraph of Kn, Proposition 2.1 implies that
γR(S(Kn)) ≤ 2n − 2. Let f be an optimal RDF for S(Kn) and hence, w( f ) = γR(S(Kn)) ≤
2n− 2. To complete the proof, it is sufficient to show that w( f )≥ 2n− 2. For each i ∈ {0,1,2},
let Vi = {v ∈ V(Kn) : f (v) = i} and ni = |Vi|. Note that n = n2 + n1 + n0. Since f is an RDF,
for each v ∈ V0 there exists z ∈ NS(Kn)(v) such that f (z) = 2. Since each z ∈ NS(Kn)(V0) with
f (z) = 2 can satisfy at most two vertices in V0, we must have∣∣{z : z ∈ NS(Kn)(V0), f (z) = 2

}∣∣ ≥ ⌈n0

2

⌉
.

Also, when u,v ∈ V0 and NS(Kn)(u) ∩ NS(Kn)(v) = {z}, we must have f (z) ̸= 0. Therefore, if
we let

Ω0 =

{
z : NS(Kn)(u) ∩ NS(Kn)(v) = {z} f or some {u,v} ⊆ V0

}
,

then we obtain

∑
z∈Ω0

f (z) ≥
⌈n0

2

⌉
× 2 +

((
n0

2

)
−

⌈n0

2

⌉)
× 1.
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If u,v ∈ V1 and NS(Kn)(u) ∩ NS(Kn)(v) = {z}, then f (z) ̸= 0. Thus,

∑
z∈Ω1

f (z) ≥
(

n1

2

)
× 1

in which

Ω1 =

{
z : NS(Kn)(u) ∩ NS(Kn)(v) = {z} f or some {u,v} ⊆ V1

}
.

Finally, if u ∈ V0, v ∈ V1 and NS(Kn)(u) ∩ NS(Kn)(v) = {z}, then f (z) ≥ 1. Thus,

∑
z∈Ω

f (z) ≥ (n0n1)× 1

in which

Ω =

{
z : NS(Kn)(u) ∩ NS(Kn)(v) = {z} f or some u ∈ V0 and v ∈ V1

}
.

These facts imply that

w( f ) = ∑
v∈V(Kn)

f (v) + ∑
z∈V(S(Kn))\V(Kn)

f (z)

≥ n2 × 2 + n1 × 1 +
⌈n0

2

⌉
+

(
n0

2

)
+

(
n1

2

)
+ n0n1. (∗)

Now we consider the following two cases.
Case 1. n0 ̸= 0:

In this case, we have n0 ≥ 1 and hence n0n1 ≥ n1. Also, (n0 − 2)2 ≥ 0 implies that n0 +

n0(n0 − 1) ≥ 4n0 − 4 and hence,

n0

2
+

n0(n0 − 1)
2

≥ 2n0 − 2.

Thus, from inequality (∗) we obtain

w( f ) ≥ 2n2 + n1 + n0n1 +
⌈n0

2

⌉
+

(
n0

2

)
≥ 2n2 + n1 + n1 +

n0

2
+

n0(n0 − 1)
2

≥ 2n2 + 2n1 + (2n0 − 2)

≥ 2n − 2,

as desired.

Case 2. n0 = 0:
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Since
(
n1 − 3

2

)2
+ 7

4 ≥ 0, we have (n1
2 ) ≥ n1 − 2. Now inequality (∗) implies that

w( f ) ≥ 2n2 + n1 +

(
n1

2

)
≥ 2n2 + n1 + (n1 − 2)

= 2n − 2,

and the proof is complete.

By using Theorem 2.8, we have γR(S(Kn)) = 2n − 2 for each n ≥ 2, which shows that the
bound provided in Corollarly 2.2 is sharp.

Theorem 2.9. Let Kr,s be a complete bipartite graph with r ≤ s and s≥ 2. Then we have γR(S(Kr,s)) =

2r + s.

Proof. By using Proposition 2.6, we have γR(S(G)) ≤ 2r + s. Let f : V(S(Kr,s)) → {0,1,2}
be an RDF of minimum weight for S(Kr,s). Thus, w( f ) = γR(S(Kr,s)) ≤ 2r + s. In order to
complete the proof, it is sufficient to show that w( f ) ≥ 2r + s. Assume that X and Y are two
partite sets of Kr,s in which |X| = r and |Y| = s. For each i ∈ {0,1,2}, let

Xi = {x : x ∈ X, f (x) = i}, Yi = {y : y ∈ Y, f (y) = i}, ri = |Xi|, si = |Yi|.

Note that r = r0 + r1 + r2 and s = s0 + s1 + s2. Since f is an RDF, for each v ∈ X0 ∪ Y0 there
exists z ∈ NS(Kr,s)(v) such that f (z) = 2. When x0 ∈ X0 and y0 ∈ Y0 and

{z} = NS(Kr,s)(x0) ∩ NS(Kr,s)(y0),

we must have f (z) ≥ 1. Also, if for x0 ∈ X0, y0 ∈ Y0, NS(Kr,s)(x0) ∩ NS(Kr,s)(y0) = {z} we have
f (z) = 2, then z can satisfy both of x0 and y0. Thus,

∑
z∈Ω′

f (z) ≥ max{r0, s0} × 2 +
(
r0s0 − max{r0, s0}

)
× 1,

in which

Ω′ =

{
z : NS(Kr,s)(x0) ∩ NS(Kr,s)(y0) = {z} f or some x0 ∈ X0 and y0 ∈ Y0

}
.

If x1 ∈ X1, y1 ∈ Y1 and z is the unique common neighbor of x1 and y1 in S(Kr,s), then we have
f (z)≥ 1. If x0 ∈ X0, y1 ∈ Y1 and z is the unique common neighbor of x0 and y1, then f (z)≥ 1.
A similar argument holds when x1 ∈ X1 and y0 ∈ Y0. Therefore,

w( f ) = ∑
x∈X

f (x) + ∑
y∈Y

f (y) + ∑
z∈V(S(Kr,s))\V(Kr,s)

f (z)

≥ (2r2 + r1) + (2s2 + s1) + r0s0 + max{r0, s0}+ r1s1 + r0s1 + r1s0

= (2r2 + r1) + (2s2 + s1) + max{r0, s0}+ r0(s0 + s1) + r1(s0 + s1)

= (2r + s) + (s2 − s0 − r1 − 2r0) + max{r0, s0}+ r0(s0 + s1) + r1(s0 + s1). (∗∗)
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Now we consider the following cases.

Case 1. s0 + s1 ≥ 2:
In this case, we have

max{r0, s0}+ r0(s0 + s1) + r1(s0 + s1) ≥ s0 + 2r0 + 2r1.

Now inequality (∗∗) implies that

w( f ) ≥ (2r + s) + (s2 − s0 − r1 − 2r0) + (s0 + 2r0 + 2r1)

= (2r + s) + s2 + r1

≥ 2r + s,

as desired.

Case 2. s0 + s1 = 1:
In this case s0 ≤ 1 and since s ≥ 2 we have

s2 = s − (s0 + s1) = s − 1 ≥ 1 ≥ s0.

Thus,
max{r0, s0}+ r0(s0 + s1) + r1(s0 + s1) ≥ r0 + r0 + r1.

Then by using the inequality (∗∗) we obtain

w( f ) ≥ (2r + s) + (s2 − s0 − r1 − 2r0) + (r0 + r0 + r1)

= (2r + s) + s2 − s0

≥ 2r + s,

as desired.

Case 3. s0 + s1 = 0:
In this case we have s0 = 0 and s = s2. Hence,

max{r0, s0}+ r0(s0 + s1) + r1(s0 + s1) = max{r0, s0} ≥ r0.

Then, inequality (∗∗) implies that

w( f ) ≥ (2r + s) + (s2 − s0 − r1 − 2r0) + (r0)

= (2r + s) + s2 − r1 − r0

= (2r + s) + s − r1 − r0

≥ (2r + s) + r − r1 − r0

= (2r + s) + r2

≥ 2r + s.

Now the proof is complete.
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In the following we provide a lemma which will be used in the next theorem.

Lemma 2.10. Let k ≥ 3 be an integer and G = Kn1,n2,...,nk be a complete k-partite graph of order
n = n1 + n2 + · · ·+ nk. Then,

i) if k = 3, then |E(G)| ≥ 2n − 3,

ii) if k ≥ 4, then
n
2
+ |E(G)| ≥ 2n.

Proof. Let X1, X2, ..., Xk be partite sets of Kn1,n2,...,nk in which |Xi| = ni, 1 ≤ i ≤ k. For each
i ∈ {1,2, ...,k} choose an arbitrary vertex xi

1 ∈ Xi. Obviously, the set {x1
1, x2

1, ..., xk
1} induces

a complete subgraph Kk in Kn1,n2,...,nk . If there exists x ∈ Xi \ {xi
1}, then x has at least k − 1

neighbors in other parts and hence, provides at least k − 1 edges. Thus,

|E(G)| ≥
(

k
2

)
+ (n − k)(k − 1).

If k = 3, then we have

|E(G)| ≥
(

3
2

)
+ (n − 3)(3 − 1) = 2n − 3,

which confirms the statement (i). Assume that k ≥ 4 and hence, (n − k + n
2 )≥ 2. Now for the

statement (ii) we obtain

n
2
+ |E(G)| ≥ n

2
+

(
k
2

)
+ (n − k)(k − 1)

≥ n
2
+

(
k
2

)
+ (n − k)× 3

= 2n +
k(k − 1)

2
− 2k + n − k +

n
2

= 2n +
k2 − 5k

2
+

(
n − k +

n
2
)

≥ 2n +
k2 − 5k

2
+ 2

= 2n +
(k − 1)(k − 4)

2
≥ 2n.

For the Roman domination number of the subdivision of complete multipartite graphs
we have the following interesting result.

Theorem 2.11. Let k ≥ 3 be an integer and G = Kn1,n2,...,nk be a complete k-partite graph of order
n = n1 + n2 + ...+ nk in which n1 ≥ n2 ≥ ... ≥ nk and n1 ≥ 2. Then, we have γR(S(G)) = 2n − n1.
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Proof. Assume that V(G) = X1 ∪ X2 ∪ ... ∪ Xk in which Xi = {xi
1, xi

2, ..., xi
ni
} is the i-th part of

G for each i ∈ {1,2, ...,k}, and V(S(G)) = V(G) ∪ Z where

Z =

{
xij

rs : i ̸= j, {i, j} ⊆ {1,2, ...,k}, 1 ≤ r ≤ ni, 1 ≤ s ≤ nj, NS(G)(xij
rs) = {xi

r, xj
s}
}

.

Define the function f : V(S(G))→ {0,1,2} as

f (v) =


1 v ∈ X1

2 v ∈ V(G) \ X1

0 v ∈ Z.

With a simple check, we can see that f is an RDF for S(G) and hence,

γR(S(G)) ≤ w( f ) = 2n − n1.

Now let g : V(S(G)) → {0,1,2} be an RDF for S(G) with the minimum weight. Thus,
w(g) = γR(S(G)) ≤ 2n − n1. To complete the proof, we want to show that w(g) ≥ 2n − n1.
We consider the following two cases.

Case 1. g(v) ∈ {0,2} for each v ∈ V(G):
If g(v) = 2 for each v ∈ V(G), then we have

w(g) ≥ ∑
v∈V(G)

g(v) = 2n,

which contradicts the fact w(g) ≤ 2n − n1. Hence, there exists v ∈ V(G) such that g(v) = 0.
For each i ∈ {1,2, ...,k}, let Xi

0 = {v : v ∈ Xi, g(v) = 0}. Also, let V0 = X1
0 ∪ X2

0 ∪ · · · ∪ Xk
0 and

k′ =
∣∣{i : Xi

0 ̸= ∅}
∣∣. Note that we have k′ ≥ 1.

If k′ = 1, then V0 = X j
0 for some j ∈ {1,2, ...,k} and since g is an RDF, each vertex v ∈ X j

0
has at least one (private) neighbor in the set Z which is assigned 2 by the function g. This
implies that

w(g) = ∑
v∈V(G)

g(v) + ∑
z∈Z

g(z) = 2(n − |V0|) + ∑
z∈Z

g(z) ≥ 2(n − |V0|) + 2|V0| = 2n,

which contradicts the inequality w(g) ≤ 2n − n1.
Therefore, we have k′ ≥ 2 and hence, |V0| ≥ k′ ≥ 2. Thus, the induced subgraph of G on the
set V0 (i.e. G[V0]) is a complete (bipartite or) multipartite graph with k′ partite sets. Since g is
an RDF, each vertex v ∈ V0 has at least one neighbor in the set Z which is assigned 2 by the
function g, and for each vertex in Z whose both neighbors are in V0 we must have g(z) ≥ 1.
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Also, each vertex z ∈ Z with g(z) = 2 can satisfy at most two vertices in V0. Therefore,

w(g) = ∑
v∈V(G)

g(v) + ∑
z∈Z

g(z)

= 2(n − |V0|) + ∑
z∈Z

g(z)

≥ 2(n − |V0|) +
⌈
|V0|

2

⌉
× 2 +

(∣∣E(G[V0])
∣∣− ⌈

|V0|
2

⌉)
× 1

= 2(n − |V0|) +
⌈
|V0|

2

⌉
+

∣∣E(G[V0])
∣∣. (∗ ∗ ∗)

If k′ ≥ 4, then the statement (ii) in Lemma 2.10 (applied to the complete k′-partite graph G[V0])
and the inequality (∗ ∗ ∗) imply that

w(g) ≥ 2(n − |V0|) + 2|V0| = 2n > 2n − n1,

which is a contradiction.
If k′ = 3, then we have |V0| ≥ k′ = 3. Then, the statement (i) in Lemma 2.10 by using the
inequality (∗ ∗ ∗) imply that

w(g) ≥ 2(n − |V0|) +
⌈
|V0|

2

⌉
+ (2|V0| − 3)

= 2n +

⌈
|V0|

2

⌉
− 3

≥ 2n +

⌈
3
2

⌉
− 3

= 2n − 1,

which contradicts the fact w(g) ≤ 2n − n1 ≤ 2n − 2.
Thus, we must have k′ = 2. This means that G[V0] is a complete bipartite graph and V0 = Xi

0 ∪
X j

0 for some i, j ∈ {1,2, ...,k}. At first, assume that G[V0] is a star graph (i.e. it is isomorphic
to K1,|V0|−1) and hence,

∣∣E(G[V0])
∣∣ = |V0| − 1. Without loss of generality, we can assume that

|Xi
0| = 1 and |X j

0| = |V0| − 1. Since for each v ∈ X j
0 we have g(v) = 0, each v ∈ X j

0 has a
(private) neighbor z ∈ Z with g(z) = 2. Thus,

w(g) = ∑
v∈V(G)

g(v) + ∑
z∈Z

g(z)

= 2(n − |V0|) + ∑
z∈Z

g(z)

≥ 2(n − |V0|) + 2(|V0| − 1)

= 2n − 2

≥ 2n − n1,

as desired.
Now assume that G[V0] is not a star graph. Hence, each of its partite sets contains at least
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two vertices and |V0| ≥ 4. Hence,∣∣E(G[V0])
∣∣ = |Xi

0| |X
j
0| ≥ min

{
q (|V0| − q) : q ∈ {2,3, ..., |V0| − 2}

}
= 2(|V0| − 2).

Now inequality (∗ ∗ ∗) implies that

w(g) ≥ 2(n − |V0|) +
⌈
|V0|

2

⌉
+

∣∣E(G[V0])
∣∣

≥ 2(n − |V0|) +
⌈
|V0|

2

⌉
+ 2(|V0| − 2)

= 2n +

⌈
|V0|

2

⌉
− 4

≥ 2n +

⌈
4
2

⌉
− 4

≥ 2n − n1,

which completes the proof in this case.

Case 2. There exists v ∈ V(G) such that g(v) = 1:
Note that V(G) = X1 ∪X2 ∪ · · · ∪Xk. Hence, there exists a vertex xi

r ∈ Xi with g(xi
r) = 1 for

some i ∈ {1,2, ...,k} and some r ∈ {1,2, ...,ni}. At first, assume that for each z = xij
rs ∈ NS(G)(xi

r)

we have g(z) = 0. Then, since g is an RDF and NS(G)(xij
rs) = {xi

r, xj
s}, we must have g(xj

s) = 2
for each j ∈ {1,2, ...,k} \ {i} and each s ∈ {1,2, ...,nj}. Also, since g is an RDF, for each v ∈ Xi

we have (
g(v) + ∑

z∈NS(G)(v)
g(z)

)
≥ 1.

Therefore, we obtain

w(g) = ∑
v∈V(G)\Xi

g(v) + ∑
v∈Xi

g(v) + ∑
z∈Z

g(z)

= (n − ni)× 2 + ∑
v∈Xi

g(v) + ∑
z∈Z

g(z)

≥ 2(n − ni) + ∑
v∈Xi

(
g(v) + ∑

z∈NS(G)(v)
g(z)

)
≥ 2(n − ni) + ni

= 2n − ni

≥ 2n − n1,

as desired.
Thus, we can suppose that for each vertex v ∈ V(G) with g(v) = 1 there exists z ∈ NS(G)(v)
such that g(z) ̸= 0. If g(z) = 2, then the function g1 : V(S(G))→ {0,1,2} defined by

g1(u) =
{

0 u = v
g(u) otherwise,
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is an RDF and w(g1) < w(g) which contradicts the minimality of w(g).
Therefore, if v ∈ V(G) is a vertex with g(v) = 1, then for each z ∈ NS(G)(v) we have g(z) ∈
{0,1} and there exists z ∈ NS(G)(v) such that g(z) = 1.
Assume that v ∈ V(G), g(v) = 1 and g(z) = 1 where z ∈ NS(G)(v). Define the function g2 :
V(S(G))→ {0,1,2} as

g2(u) =


0 u = v
2 u = z
g(u) otherwise.

It is straightforward to see that g2 is an RDF and w(g2) = w(g). Thus, we can replace g with
g2. Note that by using this algorithm, we reduce the number of vertices in V(G) which are
assigned 1. By repeating this algorithm if necessary, we obtain an RDF with the minimum
weight, say h, such that h(v) ∈ {0,2} for each v ∈ V(G). Now Case 1 can be applied to
complete the proof.

3 Conclusions

In this paper, we provide some sharp bounds for the Roman domination number of the
subdivision of a graph regarding its matchings, connected components and diameter. Then,
in each case we show that the bound will be attained when G is equal to a mentioned in-
duced subgraph. Also, we provide some tight upper bonds for bipartite graphs which lead
to some upper bounds for trees. Finally, we determine the exact value of the Roman domina-
tion number for the subdivision of of complete graph Kn, complete bipartite graph Kr,s and
complete multipartite graph Kn1,n2,...,nk .
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