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On the Cayleyness of bipartite Kneser graphs
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Abstract. For any given n,k ∈ N with 2k < n, the bipartite Kneser graph H(n,k) is defined as the
graph whose vertex set is the family of k-subsets and (n − k)-subsets of [n] = {1,2, . . . ,n} in which any
two vertices are adjacent if and only if one of them is a subset of the other. In this paper, we study
some algebraic properties of the bipartite Kneser graph H(n,k). In particular, we determine the values
of n,k for which the bipartite Kneser graph H(n,k) is a Cayley graph.
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1 Introduction

For a positive integer n > 1, let [n] = {1,2, . . . ,n} and V be the set of all k-subsets and
(n − k)-subsets of [n]. The bipartite Kneser graph H(n,k) has V as its vertex set, and vertices
A, B are adjacent if and only if A ⊂ B or B ⊂ A. If n = 2k, it is obvious that we do not have
any edges, and in such a case, H(n,k) is a null graph, and hence we assume that n ≥ 2k + 1.
It follows from the definition of the graph H(n,k), that it has 2(n

k) vertices and the degree of
each of its vertex is (n−k

k )= ( n−k
n−2k), hence it is a regular graph. It is clear that H(n,k) is a bipar-

tite graph. In fact, if V1 = {v ∈ V(H(n,k))| |v| = k} and V2 = {v ∈ V(H(n,k))| |v| = n − k},
then {V1,V2} is a partition of V(H(n,k)) and every edge of H(n,k) has a vertex in V1 and a
vertex in V2 and |V1| = |V2|.

It is easy to show that the graph H(n,k) is a connected graph. The bipartite Kneser graph
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H(2n − 1,n − 1) is known as the middle cube MQ2n−1 [19,27] or regular hyper-star graph
HS(2n,n) [11,13,16,18]. The graph MQ2n−1 has been studied by various authors and some
of the papers about it are [11,13,19,20]. Figure 1. shows the bipartite Kneser graph H(5,2) in
the plane. Note that in Figure1, the set {i, j,k} ({i, j}) is denoted by ijk (ij).
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Figure 1. Bipartite Kneser graph H(5,2).

In this paper, among various interesting properties of the bipartite Kneser graph H(n,k),
we interested in its automorphism group. We want to show how this group acts on the
vertex set. Mirafzal [13] determined the automorphism group of MQ2n−1 = HS(2n,n) =
H(2n − 1,n − 1) and showed that HS(2n,n) is a vertex-transitive non Cayley graph. Also, he
showed that H(2n− 1,n− 1) is arc-transitive. Later, he determined the automorphism group
of the graph H(n,k) and show that this graph is a vertex-transitive graph for all values of n,k
[16,20]. We think that the following question is an unanswered question;

Question For what values of n,k the bipartite Kneser graph H(n,k) is a Cayley graph?

In this paper, we answer the question.

2 Preliminaries

In this paper, a graph Γ = (V, E) is considered as a finite undirected simple graph, where
V = V(Γ) is the vertex set and E = E(Γ) is the edge set. For all the terminology and notation
not defined here, we follow [4,5,7].

The graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are called isomorphic, if there is a bijection
α : V1 −→ V2 such that {a,b} ∈ E1 if and only if {α(a),α(b)} ∈ E2 for all a,b ∈ V1. In such a case
the bijection α is called an isomorphism. An automorphism of a graph Γ is an isomorphism of
Γ with itself. The set of automorphisms of Γ with the operation of composition of functions
is a group, called the automorphism group of Γ and denoted by Aut(Γ).

The group of all permutations of a set V is denoted by Sym(V) or just Sym(n) when
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|V| = n. A permutation group G on V is a subgroup of Sym(V). In this case we say that
G acts on V. If X is a graph with vertex set V, then we can view each automorphism as a
permutation of V, and so Aut(X) is a permutation group. If G acts on V, we say that G is
transitive (or G acts transitively on V), when there is just one orbit. This means that given
any two elements u and v of V, there is an element β of G such that β(u) = v.

The graph Γ is called vertex-transitive if Aut(Γ) acts transitively on V(Γ). For v ∈ V(Γ)
and G = Aut(Γ), the stabilizer subgroup Gv is the subgroup of G consisting of all automor-
phisms that fix v. In the vertex-transitive case all stabilizer subgroups Gv are conjugate in
G, and consequently isomorphic. In this case, the index of Gv in G is given by the equation,
|G : Gv| = |G|

|Gv| = |V(Γ)|. If each stabilizer Gv is the identity group, then every element of G,
except the identity, does not fix any vertex, and we say that G acts semiregularly on V. We
say that G acts regularly on V if and only if G acts transitively and semiregularly on V and
in this case we have |V| = |G|.

Let G be any abstract finite group with identity 1, and suppose Ω is a set of G, with the
properties:

(i) x ∈ Ω =⇒ x−1 ∈ Ω; (ii) 1 /∈ Ω.
The Cayley graph Γ = Γ(G;Ω) is the (simple) graph whose vertex-set and edge-set defined

as follows :
V(Γ) = G, E(Γ) = {{g, h} | g−1h ∈ Ω}. It can be shown that a connected graph Γ is a

Cayley graph if and only if Aut(Γ) contains a subgroup H, such that H acts regularly on
V(Γ) [4, chap 16].

3 Main results

Proposition 3.1. The graph H(n,k) is a vertex-transitive graph.

Proof. Let [n] = {1,2, . . . ,n}, Γ = H(n,k) and V = V(Γ). It is easy to prove that the graph Γ is
a regular bipartite graph. In fact, if V1 = {v ∈ V| |v| = k} and V2 = {v ∈ V| |v| = n − k}, then
V = V1 ∪ V2 and |V1| = |V2|=(n

k), and every edge of Γ has a vertex in V1 and a vertex in V2.
Suppose u,v ∈ V. In the following steps, we show that Γ is a vertex-transitive graph.

(i) If both vertices u and v lie in V1 and |u ∩ v| = t, then we may assume

u = {x1, . . . , xt,u1, . . . ,uk−t}

and v = {x1, . . . , xt,v1, . . . ,vk−t}, where xi,uj,vh ∈ [n]. Let σ be a permutation of Sym([n]) such
that σ(xi) = xi, σ(ui) = vi and σ(wj) = wj, where wj ∈ [n]− (u ∪ v). Therefore, σ induces an
automorphism fσ : V(Γ)→ V(Γ) by the rule,

fσ{x1, . . . , xt,u1, . . . ,uk−t} = {σ(x1), ...,σ(xt),σ(u1), . . . ,σ(uk−t)}.

Hence fσ(u) = v.
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(ii) We now assume that both vertices u and v lie in V2. We can see by an easy argument
that the mapping α : V(Γ)→ V(Γ), defined by the rule α(v) = vc, where vc is the complement
of the set v in [n] (for every v in V), is an automorphism of Γ. Therefore α(u),α(v) ∈ V1, and
hence there is an automorphism fσ in Aut(Γ) such that fσ(α(u)) = α(v). Thus (α−1 fσα)(u) =
v, where (α−1 fσα) ∈ Aut(Γ).

(iii) Now let u ∈ V1 and v ∈ V2, thus α(v) ∈ V1 and hence there is an automorphism fσ in
Aut(Γ) such that fσ(u) = α(v), thus (α−1 fσ)(u) = v.

The study of vertex-transitive graphs has a long and rich history in discrete mathematics.
Prominent examples of vertex-transitive graphs are Cayley graphs which are important in
both theory as well as applications. Some of the recent studies on Cayley graphs include
[2,10,12]. Vertex-transitive graphs that are not Cayley graphs, for which we use the abbrevia-
tion VTNCG, have been an object of a systematic study since 1980 [3,6]. In trying to recognize
whether or not a vertex-transitive graph is a Cayley graph, we are left with the problem of
determining whether the automorphism group contains a regular subgroup [4. chapter 16].
The reference [1] is an excellent source for studying graphs that are VTNCG. In particular,
determining the automorphism group of a given graph can be very useful in determining
whether this graph is a Cayley graph. Although, to find the automorphism group of a graph
may be difficult, but it is one of the research area in algebraic graph theory. Some of the re-
cent works include [13-26]. On the automorphism group of the graph H(n,k), we have the
following result.

Theorem 3.2. [16] Let n and k be integers with n
2 > k ≥ 1, and let Γ = (V, E) = H(n,k) be a

bipartite Kneser graph with partition V = V1 ∪ V2, V1 ∩ V2 = ∅, where V1 = {v | v ⊂ [n], |v| = k}
and V2 = {w | w ⊂ [n], |w|= n − k}. Then Aut(Γ)∼= Sym([n])× Z2, where Z2 is the cyclic group
of order 2.

We now want to investigate Cayley properties of the bipartite Kneser graph H(n,k). In
the first step, we show that if k = 1, then H(n,k) is a Cayley graph.

Proposition 3.3. [18] The bipartite Kneser graph H(n,1) is a Cayley graph.

Proof. Let [n] = {1,2, ...,n}, Γ = H(n,1) and Λ = Cay(D2n,Ω), where D2n = ⟨a,b | an = b2 =

1,ba = an−1b⟩ is the dihedral group of order 2n, and Ω = {ab, a2b, ..., an−1b}. Note that Ω is
an inverse-closed subset of D2n − {1} (note that (aib)2

= 1). We show that Λ is isomorphic
to the graph H(n,1). Consider the following mapping f ;

f : V(Γ) −→ V(Λ)

f (v) =
{

ai v = {i}, i ∈ [n]
ajb v = [n]− {j}, j ∈ [n].

It is is clear that f is a bijective mapping. Let {i} and [n]− {j} be two vertices of Γ, then

{i} ↔ [n]− {j} ⇔ {i} ⊂ [n]− {j} ⇔ i ̸= j
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⇔ (ai)−1ajb ∈ Ω ⇔ ai ↔ ajb.

Note that if i = j then (ai)−1ajb = b /∈ Ω. Therefore H(n,1) ∼= Λ = Cay(D2n,Ω).

4 Direct products of graphs

If Γ1,Γ2 are graphs, then their direct product is the graph Γ1 × Γ2 with vertex set

{(v1,v2) | v1 ∈ Γ1,v2 ∈ Γ2}

and for which vertices (v1,v2) and (w1,w2) are adjacent precisely if v1 is adjacent to w1 in
Γ1 and v2 is adjacent to w2 in Γ2. It can be shown that the direct product is commutative
and associative [8]. The following theorem, first proved by Weichsel (1962) characterizes
connectedness in direct products of two factors [8].

Theorem 4.1. [8] Suppose Γ1 and Γ2 are connected nontrivial graphs. If at least one of Γ1 or Γ2 has
an odd cycle, then Γ1 × Γ2 is connected. If both Γ1 and Γ2 are bipartite, then Γ1 × Γ2 has exactly two
components.

We need the following theorem in the sequel.

Theorem 4.2. Let G1 and G2 be groups, S1 ⊂ G1, S2 ⊂ G2, S1 = S1
−1,S2 = S2

−1 and 1 /∈ S1,1 /∈ S2.
Then

Cay(G1,S1)× Cay(G1,S1) = Cay(G1 × G2,S1 × S2)

where G1 × G2 is the direct product of groups G1 and G2.

Proof. The proof is straightforward.

We recall that, the Kneser graph K(n,k) is the graph with the familiy of k-subsets of [n]
as its vertex-set, in which two vertices v,w are agjacent when v ∩ w = ∅. We now want to
investigate Cayley properties of the bipartite Kneser graph H(n,k). In the first step, we show
that if k = 1, then H(n,k) is a Cayley graph.

Theorem 4.3. Let n,k be positive integers and K2 be the complete graph on the set {0,1}. Then for
the bipartite Kneser graph H(n,k), we have

H(n,k) ∼= K(n,k)× K2.

Proof. We define the mapping f : V(H(n,k))→ V(K(n,k)× K2) by the rule

f (v) =
{
(v,0) i f |v| = k
(vc,1) i f |v| = n − k,
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where vc is the complement of the set v in the set [n]. It is an easy task to show that f is
a bijection. Let {v,w} be an edge in the graph H(n,k), with |v| = k, then v ⊂ w, and hence
v ∩ wc = ∅. Therefore v and wc are adjacent vertices in the Kneser graph K(n,k). Hence
f (v) = (v,0) and f (w) = (wc,1) are adjacent vertices in the graph K(n,k)× K2.

It is not difficult to show that the Kneser graph K(n,k) has odd cycles, hence we can
deduce by Theorem 3.4, Theorem 3.5 and Theorem 3.6 that the bipartite Kneser graph H(n,k)
is a connected graph.

Remark 1. Note that K2 = Cay(Z2,S), where S = {1}. Therefore, if for some n,k the Kneser
graph K(n,k) is a Cayley graph, then by Theorem 3.5. and Theorem 3.6. we conclude that
the bipartite Kneser graph H(n,k) is a Cayley graph.

We are now ready to determine for what values of n,k the bipartite Kneser graph H(n,k)
is a Cayley graph.

A permutation group G, acting on a set V(|V| = n) is k-homogeneous if its induced action
on V{k} is transitive, where V{k} is the set of all k-subsets of V. Also we say that G is k-
transitive if G is transitive on V(k), where V(k) is the set of k-tuples of distinct elements of V.
Note that if G is k-homogeneous, then we have (n

k) |G| and if G is k-transitive, then we have
n!

(n−k)! | |G|. If the group G acts regularly on V(k), then G is said to be sharply k-transitive

on V. This means that for given two k-tuples in V(k), there is a unique permutation in G
mapping one k-tuple to the other. In this scope, we have the following result [5. Theorem
9.4B, 9] which is a deep result in group theory.

Theorem 4.4. Let G be a k-homogeneous group on a finite set Ω, |Ω|= n, where 2 ≤ k ≤ n
2 . Then G

is (k − 1)-transitive, and with the following exceptions G is m-transitive:
(a) k = 4 and, G = PGL2(8), PΓL2(8), PΓL2(32);
(b) k = 3 and, PSL2(q) ≤ G ≤ PΣL1(q), q ≡ 3 (mod 4);
(c) k = 3 and, G = AGL1(8), AΓL1(8), AΓL1(32);
(d) k = 2 and, ASL1(q) ≤ G ≤ AΣL1(q), q ≡ 3 (mod 4).

Godsil [6], by using the above theorem, proved the following result.

Theorem 4.5. [6] Except in the following cases, the Kneser graph K(n,k) is not a Cayley graph.

(1) k = 2, n is a prime-power and n ≡ 3 (mod 4).
(2) k = 2, n = 8 or 32.

We are now ready to prove the following important result.

Theorem 4.6. Let n ≥ 5 and k ≥ 2. If Γ = H(n,k) is a bipartite Kneser graph, then except in the
following cases, the graph Γ is not a Cayley graph:

(1) k = 2, n is a prime-power and n ≡ 3 (mod 4).
(2) k = 2, n = 8 or 32.
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Proof. We know by Theorem 3.2, that Aut(H(n,k)) = H = { fγαi | γ ∈ Sym([n]),0 ≤ i ≤
1}(∼= Sym([n]) × Z2), where α and fγ are automorphisms of the graph Γ which are de-
fined in Proposition 3.1. Suppose that Γ = H(n,k) is a Cayley graph. Then, Aut(H(n,k))
has a subgroup R such that R acts regularly on the set V(H(n,k)). Then |R| = |V(Γ)| =
2(n

k) = 2 n!
(k!)(n−k)! . If r is an element of R, then by Theorem 3.7 r has a form such as fσαi,

where σ ∈ Sym([n]) and i ∈ {0,1}. It is an easy task to show that α fσ = fσα, for every
σ ∈ Sym([n])[16]. If fσαi ∈ R, then

( fσαi)( fσαi) = fσ fσ(α
i)2 = fσ

2 = fσ2 ∈ R.

Then there are elements of the form fθ, θ ∈ Sym([n]) in R. Let M1 = { fϕ | fϕ ∈ R}, we can
easily see that M1 is a subgroup of R. Since R acts transitively on V(H(n,k)), hence R contains
elements of the form fθα. We let M2 ={ fθα | fθα ∈ R}. Let fθ0α be a fixed element of M2.
Then M2 fθ0α ⊆ M1, because ( fθα)( fθ0α) = fθ fθ0(α)

2 = fθ fθ0 = fθθ0 . Then, |M2| ≤ |M1|. Since
M1 fθ0α ⊆ M2, |M1| ≤ |M2|, and hence |M1| = |M2| = (1/2)|R|=(n

k). We can see that the
group M1 is transitive on the set V1 = {v | v ⊂ [n], |v| = k}. Moreover, we can see that M1 is
a subgroup of the automorphism group of the Kneser graph K(n,k) that acts regularly on its
vertex-set. In other words, the Kneser graph K(n,k) is a Cayley graph. Now, by Theorem 3.9
and Remark 1 the result follows.
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