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Abstract. Polytrimethyleneterephthalate is an extensively utilized thermoplastic industrial poly-
mer characterized by a low melting point and minimal water absorption and it follows the general
molecular formula (C11H10O4)n. It is interesting to chemists and engineering researchers due to its
application in various industries, especially in textiles and engineering thermoplastics. In this arti-
cle, the general formulas of some degree-based topological indices are obtained via M-polynomials
for Polytrimethylene terephthalate. Calculating indices via these formulas does not require count-
ing the degree of vertices or edge partitioning and can only be calculated by having the number
of polytrimethylene terephthalate monomers. The obtained results are displayed numerically and
graphically, then the topological indices are graphically compared.
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1 Introduction

Natural resource-based approaches to bioengineering plastics are being developed to
compete in automobiles, power, and other industries. polytrimethylene terephthalate (PTT)
is a particular kind of bioengineering plastic [1]. PTT is a synthesized polyester with the
molecular formula (C11H10O4)n. This polymer is prepared by esterification of 1,3−propanediol
(HO(CH2)3OH) with terephthalic acid (C6H4(COOH)2), see Figures 1 and 2. Polyester ac-
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counts for approximately 60 percent of total fiber production. PTT fibers are suitable for use
in the textile industry due to having advantages such as waterless dyeing, simple dye formu-
lation, reduction of dyeing time, and less energy consumption [2]. PTT is also suitable for
the carpet industry due to its elasticity, softness, chemical stability, and stain resistance [3].

One of the areas of research in chemical graph theory at the moment is the study of topo-
logical indices (TIs) that can be used to predict various chemical and biological characteristics
of chemical structures. They encode data on molecular size, shape, and branching in a quan-
titative way, which is used to evaluate the topological similarity between chemical struc-
tures [4]. The American physical chemist Harold Wiener introduced the oldest TI in 1947.
He reported the presence of a correlation between this new index and many physicochem-
ical properties of alkanes, including the structural determination of paraffin boiling points.
Hosoya defined the Wiener index as the sum of the distances between all unordered pairs
of vertices of G. Gutman and Trinajstić introduced the first and second Zagreb index which
provides quantitative measures of molecular branching [6–8]. Estrada et al. introduced the
Atom-bond connectivity (ABC) index which provides a good model for the stability of linear
and branched alkanes [9, 10], some of the degree-based TIs are in Table 1 [11–19].

Topological polynomials are used in mathematical chemistry to calculate TIs, for example,
Hosoya, M, MN, and SMP polynomials can be mentioned. Hosoya polynomial admits many
chemical applications. Almost all distance-based TIs can be derived from this polynomial
[20]. The M-polynomial was introduced in 2015 by Deutsch and Klavžar [21, 22]. The M-
polynomial of G is written as:

M(G; x,y) = ∑
δ≤i≤j∆

mij(G)xiyj,

where δ = min{dv|v ∈ V(G)}, ∆ = max{dv|v ∈ V(G)}, and mij(G) is the number of edges
uv ∈ E(G) such that {du,dv} = {i, j}, and du,dv are the degree of vertices u,v ∈ V(G).

In this article, general formulas were offered based on the number of monomers for some
TIs so these can be obtained without the need to count the degree of vertices and edge par-
titioning. Notably, no prior studies on this method of calculating the TIs of PTT were found
in the surveyed literature.

Figure 1 Reaction scheme of PTT-synthesis by esterification.
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Figure 2 polytrimethylene terephthalate structure.

2 Results and Discussion

The base graph of polytrimethylene terephthalate PTT(p), presented in Figure 3, can be
considered a structure with p number of monomers, which is a simple molecular graph with
15p vertices and 16p − 1 edges. The number of vertices, edges, and monomers are denoted
by n, m, and p, respectively. Edge partitioning of the PTT(p) graph is given in Table 1.
Table 2 shows the mathematical formula for the degree-based TIs used in this article and
Table 3 includes some degree-based topological indices computed via M-polynomial, where
operators used are defined as:

Dx M(x,y) = x
∂M
∂x

, DyM(x,y) = y
∂M
∂y

,
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� x

0

M(t,y)
t
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� y
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Figure 3 Base graph of polytrimethylene terephthalate.
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Table 1 Edge partition of PTT.
(du,dv) (1,2) (1,3) (2,2) (2,3) (3,3) Total edges

Number of Edges 1 2p + 1 6p − 2 6p − 1 2p 16p − 1

Table 2 Some degree-based topological indices.
Topological index Mathematical formula
First Zagreb FZ(G) = Σuv∈E(G) (du + dv)

Second Zagreb SZ(G) = Σuv∈E(G) (dudv)

Hyper Zagreb HZ(G) = Σuv∈E(G) (du + dv)2

Modified Zagreb MZ(G) = Σuv∈E(G)
1

dudv

Harmonic H(G) = Σuv∈E(G)
2

du+dv

Symmetric Division Deg SDD(G) = Σuv∈E(G)
d2

u+d2
v

dudv

Inverse sum I(G) = Σuv∈E(G)
dudv

du+dv

Forgotten F(G) = Σuv∈E(G) d2
u + d2

v
Sigma σ(G) = Σuv∈E(G) (du − dv)2

First Gourava Go1(G) = Σuv∈E(G) (du + dv + dudv)

Second Gourava Go2(G) = Σuv∈E(G) (d2
udv + d2

vdu)

Atom Band Connectivity ABC(G) = Σuv∈E(G)

√
du+dv−2

dudv

Table 3 Derivation of degree-based topological indices via M-polynomial.
Topological index Derivative from M(G; x,y)
First Zagreb (Dx + Dy)M(PTT; x,y)|x=y=1

Second Zagreb DxDyM(PTT; x,y)|x=y=1

Hyper Zagreb D2
x JM(PTT; x,y)|x=1

Modified Zagreb SxSyM(PTT; x,y)|x=y=1

Harmonic 2Sx JM(PTT; x,y)|x=y=1

Symmetric Division Deg (DxSy + DySx)M(PTT; x,y)|x=y=1

Inverse sum Sx JDxDyM(PTT; x,y)|x=1

Forgotten (D2
x + D2

y)M(PTT; x,y)|x=y=1

Sigma (D2
x + D2

y − 2DxDy)M(PTT; x,y)|x=y=1

First Gourava (Dx + Dy + DxDx)M(PTT; x,y)|x=y=1

Second Gourava (D2
xDy + D2

yDx)M(PTT; x,y)|x=y=1

Atom Band Connectivity D
1
2
x Q−2 JS

1
2
x S

1
2
y M(PTT; x,y)|x=y=1

Theorem 2.1. Consider PTT with p number of monomers. Then its M-polynomial is as follows:

M(PTT; x,y) = xy2 + (2p + 1)xy3 + (6p − 2)x2y2 + (6p − 1)x2y3 + (2p)x3y3.
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Proof. We can calculate the M-polynomial of PTT using Figure 3 and Table 1 as follows:

M(G; x,y) = ∑
δ≤i≤j∆

mij(G)xiyj

= ∑
1≤2

m12(G)xy2 + ∑
1≤3

m13(G)xy3

+ ∑
2≤2

m22(G)x2y2 + ∑
2≤3

m23(G)x2y3

+ ∑
3≤3

m33(G)x3y3 = |E(1,2)|xy2 + |E(1,3)|xy3

+ |E(2,2)|x2y2 + |E(2,3)|x2y3 + |E(3,3)|x3y3

= xy2 + (2p + 1)xy3 + (6p − 2)x2y2 + (6p − 1)x2y3 + (2p)x3y3.

Theorem 2.2. Let PTT(p), where p ≥ 1. Then the following hold:

(i) FZ(PTT) = 74p − 6,

(ii) SZ(PTT) = 84p − 9,

(iii) SDD(PTT) = 146
3 p − 5

2 ,

(iv) MZ(PTT) = 61
18 p + 1

6 ,

(v) H(PTT) = 212p−7
30 ,

(vi) I(PTT) = 17.7p − 1.78,

(vii) ABC(PTT) =
√

2( 1√
3
− 1) + p(2

√
2√
3
+ 6

√
2 + 4

3),

(viii) σ(PTT) = 14p + 4,

(ix) F(PTT) = 182p − 14,

(x) HZ(PTT) = 350p − 32,

(xi) GO1(PTT) = 128p + 15,

(xii) GO2(PTT) = 408p − 44.
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Proof. Let M(PTT; x,y) = xy2 + (2p + 1)xy3 + (6p − 2)x2y2 + (6p − 1)x2y3 + (2p)x3y3. The
following results are obtained by applying the operators on the M-polynomial.

Dx M(PTT; x,y) = xy2 + (2p + 1)xy3 + 2(6p − 2)x2y2 + 2(6p − 1)x2y3 + 6px3y3,

DyM(PTT; x,y) = 2xy2 + 3(2p + 1)xy3 + 2(6p − 2)x2y2 + 3(6p − 1)x2y3 + 6px3y3,

Sx M(PTT; x,y) = xy2 + (2p + 1)xy3 +
(6p − 2)

2
x2y2 +

(6p − 1)
2

x2y3 +
2p
3

x3y3,

SyM(PTT; x,y) =
xy2

2
+

(2p + 1)
3

xy3 +
(6p − 2)

2
x2y2 +

6p − 1
3

x2y3 +
2
3

px3y3,

SxSyM(PTT; x,y) =
1
2

xy2 +
2p + 1

3
xy3 +

6p − 2
4

x2y2 +
6p − 1

6
x2y3 +

2
9

x3y3,

JM(PTT; x,y) = x3 + (8p − 1)x4 + (6p − 1)x5 + 2px6,

Sx JM(PTT; x,y) =
x3

3
+ (8p − 1)

x4

4
+ (6p − 1)

x5

5
+ 2p

x6

6
,

QαM(PTT; x,y) = xα+1y2 + (2p + 1)xα+1y3 + (6p − 2)xα+2y2 + (6p − 1)xα+2y3 + 2pxα+3y3,

Dα
y M(PTT; x,y) = 2αxy2 + 3α(2p + 1)xy3 + 2α(6p − 2)x2y2 + 3α(6p − 1)x2y3 + 2(3)α px3y3,

Dα
x Dβ

y M(PTT; x,y) = 1α2βxy2 + 1α3β(2p + 1)xy3 + 2α2β(6p − 2)x2y2 + 2α3β(6p − 1)x2y3

+ (2)3α3β px3y3,

Sα
y M(PTT; x,y) =

1
2α

xy2 +
2p + 1

3α
xy3 +

6p − 2
2α

x2y2 +
6p − 1

3α
x2y3 +

2
3α

px3y3,

Sα
x(S

α
y)M(PTT; x,y) =

xy2

1α2α
+

(2p + 1)
1α3α

xy3 +
(6p − 2)

2α2α
x2y2 +

(6p − 1)
2α3α

x2y3 +
2p

3α3α
x3y3,

D2
xDy + D2

yDx M(PTT; x,y) = 6xy2 + 12(2p + 1)xy3 + 16(6p − 2)x2y2 + 30(6p − 1)x2y3

+ 108x3y3.

Then due to Table 3, we conclude that

(i) FZ(PTT) = (Dx + Dy)M(PTT; x,y)|x=y=1 = 74p − 6,
(ii) SZ(PTT) = DxDyM(PTT; x,y)|x=y=1 = 84p − 9,
(iii) SDD(PTT) = (DxSy + DySx)M(PTT; x,y)|x=y=1 =

146
3 p − 5

2 ,
(iv) MZ(PTT) = SxSyM(PTT; x,y)|x=y=1 =

61
18 p + 1

6 ,
(v) H(PTT) = 2Sx JM(PTT; x,y)|x=y=1 =

212p−7
30 ,

(vi) I(PTT) = Sx JDxDyM(PTT; x,y)|x=1 = 17.7p − 1.78,

(vii) ABC(PTT) = D
1
2
x Q−2 JS

1
2
x S

1
2
y M(PTT; x,y)x=y=1 =

√
2( 1√

3
− 1) + p(2

√
2√
3
+ 6

√
2 + 4

3),

(viii) σ(PTT) = (D2
x + D2

y − 2DxDy)M(PTT; x,y)|x=y=1 = 14p + 4,
(ix) F(PTT) = (D2

x + D2
y)M(PTT; x,y)|x=y=1 = 182p − 14,

(x) HZ(PTT) = D2
X JM(PTT; x,y)|x=1 = 350p − 32,

(xi) GO1(PTT) = (Dx + Dy + DxDy)M(PTT; x,y)|x=y=1 = 128p + 15,
(xii) GO2(PTT) = (D2

xDy + D2
yDx)M(PTT; x,y)|x=y=1 = 408p − 44.
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The general formulas of some degree-based TIs of PTT were obtained according to the
number of their monomers. The numerical values of these TIs for PTT(p) with the values
of the variable p ranging from 1 to 10 are shown in Table 4. Considering that the value of p
increases gradually, it can be seen from Figures 4, 5, and 6 that all indices are increasing. This
increasing trend of p shows that the TIs values increase accordingly in Table 4. Among the
investigated indices for PTT, Modified Zagreb has the lowest value, and the Second Gourava
has the highest value.

Table 4 Computation of TIs of PTT.
p FZ SZ SDD MZ H I ABC σ F HZ GO1 GO2

1 68 75 46.16 3.55 6.83 15.92 10.8 18 168 318 143 364
2 142 159 94.83 6.94 13.9 33.62 22.17 32 350 668 271 772
3 216 243 143.5 10.33 20.96 51.32 33.54 46 532 1018 399 1180
4 290 327 192.16 13.72 28.03 69.02 44.91 60 714 1368 527 1588
5 364 411 240.83 17.11 35.1 86.72 56.28 74 896 1718 655 1996
6 438 495 289.5 20.5 42.16 104.42 67.65 88 1078 2068 783 2404
7 512 579 338.16 23.88 49.23 122.12 79.02 102 1260 2418 911 2812
8 586 663 386.83 27.27 56.3 139.82 90.39 116 1442 2768 1039 3220
9 660 747 435.50 30.66 63.36 157.52 101.76 130 1624 3118 1167 3628

10 734 831 484.66 34.05 70.43 175.22 113.13 144 1806 3468 1295 4036

Figure 4 Comparison of FZ, SZ and SDD.
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Figure 5 Comparison of MZ, H, I, ABC and σ.

Figure 6 Comparison of F, HZ, GO1 and GO2.

3 Conclusion

In this article, the M-polynomial of the chemical structure of polytrimethylene terephtha-

late was calculated and general formulas were obtained based on the number of its monomers

for some degree-based topological indices. Using these formulas, there is no need to count

the edge and calculate the vertex degree to calculate the mentioned topological indices. These
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indices can be used to study chemical structures and better understand their physical and

chemical properties. The obtained results are presented both graphically and numerically.

Considering that the value of p increases gradually, all indices are increasing. Among the in-

vestigated indices for polytrimethylene terephthalate, modified Zagreb has the lowest value,

and the second Gourava has the highest value. The general conclusion of the above calcula-

tions is that according to the linear trend between the electronic properties of polytrimethy-

lene terephthalate and topological indices with the number of monomers, the electronic prop-

erties of polytrimethylene terephthalate can be estimated with any number of monomers.

The numerical values of this manuscript are valuable to the industry, and quality is easily

measured by these numerical values in production evaluation. These results are suitable for

other studies because no polynomials are involved. In the next studies, formulas for the topo-

logical indices of polyethylene terephthalate can be obtained. Structures of polytrimethylene

terephthalate and polyethylene terephthalate can be compared and determined.

On behalf of all authors, the corresponding author states that there is no conflict of inter-

est.
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