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Abstract. Giving a condition for the amenability of groups, Rosenblatt and Willis first introduced
the concept of configuration. In this paper, we investigate the relationship between ping-pong lemma
and configuration sets and show that only one configuration set is enough to ensure that several
elements in a group generates a free subgroup of that group. Using only one two-sided configuration
sets, we give, in a sense, a generalization of this result to polycyclic or FC-groups. Finiteness and
paradoxical decompositions of groups, are other properties which can be characterized with only one
configuration set.
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1 Introduction

The ping-pong lemma ensures that several elements in a group acting on a set freely
generates a free subgroup of that group. The ping-pong argument goes back to late 19th
century and is commonly attributed to Felix Klein who used it to study subgroups of Kleinian
groups, that is, of discrete groups of isometries of the hyperbolic 3-space or, equivalently
Möbius transformations of the Riemann sphere ( [5, Ch. II. B]). The ping-pong lemma was a
key tool used by Jacques Tits in his 1972 paper containing the proof of a famous result now
known as the Tits alternative ( [13]). The result states that a finitely generated linear group is
either virtually solvable or contains a free subgroup of rank two. The ping-pong lemma and
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its variations are widely used in geometric topology and geometric group theory. Modern
versions of the ping-pong lemma can be found in many books such as [5, 6] or [4].

Let g= (g1, . . . , gn) and E := {E1, . . . , Em} be an ordered subset and a collection of pairwise
disjoint subsets of G, respectively. We call (g,E) a configuration pair of G. A configuration
corresponding to a configuration pair (g,E) is an (n + 1)-tuple C = (c0, c1, . . . , cn), where ci ∈
{1, . . . ,m} for each i, such that there exists x in G with x ∈ Ec0 and gix ∈ Eci for each i ∈
{1, . . . ,n}.

The set of configurations corresponding to a configuration pair (g,E) of G will be denoted
by Con(g,E). Also, the set of all configuration sets is denoted by Con(G).

Rosenblatt and Willis [10] first introduce the concept of the configuration for characteriz-
ing the amenability of groups. It is worth noting that they worked with configuration sets
in which E was a partition of the group. One of Willis’ pursuits was to find properties of
groups that could be characterized by only one configuration set. In [3], he somewhat ad-
dressed this idea. The works after [3] is more concerned with answering the questions posed
by the authors of that paper.

In order to study quotients of a group, in addition to left translations of subsets, right
translations must also be considered; so the concept of two-sided configuration sets was sug-
gested in [9]; a two-sided configuration corresponding to a configuration pair (g,E) is a (2n +

1)-tuple C = (c0, c1, . . . , c2n) satisfying ci ∈ {1, . . . ,m}, i = 0,1, . . . ,2n, and there exists x ∈ Ec0

such that gix ∈ Eci and xgi ∈ Eci+n for each i ∈ {1, . . . ,n}; the sets x0(C), Cont(g,E) and
Cont(G) are defined as above.

There was a lack of proper notations and good foundations for the theory of configura-
tion, these defects were partially fixed in [8] and [7]. What we need from these notations and
foundations is in Section 2.

In the third section, we state and prove our version of Ping-Pong lemma. Also, we show
that a polycyclic or FC-group G admits a configuration set which only groups with an iso-
morphic section with G have that set among their configuration sets. Then we show that the
infiniteness of a non-locally finite group can also be determined with just one configuration
set.

In the last section, we deal with paradoxical decomposition and, using configuration
tools, we give a new proof for this fact that the Tarski number of a group is smaller than
the Tarski number of its sections.

2 Definitions and Preliminaries

We devote this section to provide the preliminaries and notations needed in the following
sections.

Let G and H be two groups with configuration pairs (g,E) and (h,F ), respectively, such
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that equality Cont(g,E) = Cont(h,F ), or Con(g,E) = Con(h,F ), established. If

g= (g1, . . . , gn), E = {E1, . . . , Em} ,

h= (h1, . . . , hn), F = {F1, . . . , Fm} ,

then we may say that gi and Ej is corresponding to hi and Fj, respectively. We use ”↭” to
illustrate this correspondence, i.e. gi ↭ hi and Ej ↭ Fj.

Let G be a group with g = (g1, . . . , gn) as its ordered subset. Let p be a positive integer,
let J and ρ be p-tuple with components in {1,2, . . . ,n} and {±1}, respectively. We denote the
product ∏

p
i=1 gρ(i)

J(i) by W(J,ρ;g). We call the pair (J,ρ) a representative pair on g and W(J,ρ;g) a
word corresponding to (J,ρ) comprised of elements of g. A representative pair (J,ρ) is called
reduced if ρ(i) = ρ(i + 1), whenever J(i) = J(i + 1), i = 1, . . . , p − 1.

For an arbitrary tuple J, we denoted its components number by l(J).When we speak of a
representative pair (J,ρ) we assume the same number of components for J and ρ.

For positive integers pi, if Ji is a pi-tuple, i = 1,2, J1 ⊕ J2 is a (p1 + p2)-tuple that has J1 as
its first p1 components and J2 as its second p2 components. it can easily be shown that

W(J1,ρ1;g)W(J2,ρ2;g) = W(J1 ⊕ J2,ρ1 ⊕ ρ2;g).

For a finite algebra A on a subset of a group G, we define Con(g,A) and Cont(g,A) to
be Con(g,atom(A)) and Cont(g,atom(A)), respectively, where atom(A) is the collection of
atomic sets in A.

For a finite collection D of subsets of G, the algebra on
⋃{D ∈ D} generated by elements

of D is denoted by σ(D) and is finite.
Let E := {E1, . . . , Em} and F := {F1, . . . , Fm} be collections of pairwise disjoint subsets of G

and H respectively, such that Ei ↭ Fi, i = 1, . . . ,m. For A ∈ σ(E) and B ∈ σ(F ), we say A is
corresponding to B, written A ↭ B, when

{k : Ek ⊆ A} = {k : Fk ⊆ B}.

If A ↭ B and A = Ei1 ∪ · · · ∪ Eij , then B = Fi1 ∪ · · · ∪ Fij . By an argument as used in Lemma
2.2 of [8], one can show that

Lemma 2.1. Let A and B be two algebra on two subsets of groups G and H, respectively. Assume
that g = (g1, . . . , gn) and h = (h1, . . . , hn) are ordered subsets of G and H, respectively, such that
Cont(g,A) = Cont(h,B). Consider A1, A2 ∈ A and B1, B2 ∈ B with Ai ↭ Bi, i = 1,2. We have:

(1) If gr A1 ⊆ A2, then hrB1 ⊆ B2,

(2) If A1gr ⊆ A2, then B1hr ⊆ B2,

(3) If gr A1 = A2, then hrB1 = B2,

(4) If A1gr = A2, then B1hr = B2,
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for r ∈ {1, . . . ,n}.

In Lemma 2.1, if we have the equality Con(g,A) = Con(h,B), then the implications (1)
and (3) remain true.

Let G and H be two groups. Consider collections E = {E1, . . . , Er} and F = {F1, . . . , Fr} of
pairwise disjoint subsets of G and H, respectively. Assume that

E ′ = {E′
1, . . . , E′

s}andF ′ = {F′
1, . . . , F′

s},

are their refinements. We say that these two refinements E ′ and F ′ are similar and write
(E ′,E) ∼ (F ′,F ), if

{l : Ek ∩ E′
l ̸= ∅} = {l : Fk ∩ F′

l ̸= ∅} (k = 1, . . . ,r).

In other words, if Ek =
⋃t

j=1 E′
ij
, then we have Fk =

⋃t
j=1 F′

ij
.

Note that it is implicit in the definition of similarity that similar partitions have equal
numbers of sets. An important feature of similar refinements is presented below:

Lemma 2.2. Let G and H be two groups. Assume that (g,E) and (h,F ) are two configuration pairs
for G and H, respectively and let E ′ and F ′ be their similar refinements such that Con(g,E ′) =
Con(h,F ′). Then Con(g,E) = Con(h,F ). The result remains true when replacing Con with Cont.

To prove this lemma, it suffices to slightly improve the proof of [8, Lemma 4.3].

3 Group properties that are only characterized by one configuration set

First, we show how with only one configuration set we can identify a free subgroup. Let’s
start with the following definition.

Definition 1. Let f := ( f1, . . . , fn) be a free generating set of the free group Fn. Assume that
F0 := {e} and for k = 1, . . . ,n,

Fk := {reduced words starting with fk} ,

F−k :=
{

reduced words starting with f−1
k

}
.

Put F := {F0, F±k : k = 1, . . . ,n}. The configuration set Con(f,F ) is called the free configuration
set of rank n.

In the following case, we will see how the free configuration sets are connected to the
Ping-Pong lemma:

Theorem 3.1. Let G be a group. Then the following are equivalent:

(i) G contains a non Abelian free subgroup of rank n.

(ii) Con(G) contains the free configuration set of rank n.
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(iii) There is a finitely generated subgroup ⟨g1, . . . , gn⟩ of G with an action on a set X along with
pairwise disjoint subsets {E±k : k = 1, . . . ,n} of X such that Ec

k ⊂ gkE−k, k = 1, . . . ,n.

Proof. (i) ⇒ (ii): It is clear.
(ii) ⇒ (iii): With (f,F ) as in Definition 1, we have fkFc

−k = Fk, k = 1, . . . ,n. So, Lemma 2.1
implies (3).

(iii) ⇒ (i): Let g= (g1, . . . , gn). It suffices to prove that if (J,ρ) is a reduced representative
word on g then

W(J,ρ;g)Ec
−ρ(p)J(p) ⊂ Eρ(1)J(1), (1)

where p is the number of components of J. Using induction on p, we prove this claim. By
(iii), it is easy to see that g−1

k Ec
k ⊂ E−k and gkEc

−k ⊂ Ek. This proves (1) for p = 1. Assume that
(1) holds for p ∈ N. If (J,ρ) is a reduced representative word on g where J is a (p + 1)-tuple,
then using the hypothesis of the induction, we get

W(J,ρ;g)Ec
−ρ(p+1)J(p+1) ⊂ gρ(1)

J(1)Eρ(2)J(2).

We consider two cases:

Case 1: J(2) = J(1), so ρ(1) = ρ(1) and therefore

gρ(1)
J(1)Eρ(2)J(2) = gρ(1)

J(1)Eρ(1)J(1)

⊂ gρ(1)
J(1)Ec

−ρ(1)J(1)

⊂ Eρ(1)J(1).

Case 2: J(2) ̸= J(1), hence
gρ(1)

J(1)Eρ(2)J(2) ⊂ gρ(1)
J(1)Ec

−ρ(1)J(1) ⊂ Eρ(1)J(1).

Theorem 3.1 makes it clear how a configuration set ensures that the group contains a non
Abelian free subgroup. So, it seems natural to ask:

Question 3.1. Which group properties can be characterized with only one (two-sided) configuration
set?

Below we have listed some of the group properties that respond positively to the question
above.

We now turn to two-sided configuration sets to generalize Theorem 3.1 to some finitely
presented groups. First we need the following definition (see [7, Definition 3.2]).

Definition 2. Let G be a group with a generating set g and a partition E . We say that (g,E) is
golden, if E contains {eG} and there exist representative pairs (Jg,ρg), g ∈ G#, such that
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(1) g = W(Jg,ρg;g),

(2) If Cont(g,E) = Cont(h,F ), for a configuration pair (h,F ) of a group H, then

W(Jg,ρg;h)M ∩ M = ∅,

where M ∈ F is corresponding to N.

We now state and prove the following generalization of Theorem 3.1. Before that, recall
that a group G is involved in a group H if G is isomorphic to K/N for some subgroups K, N
of G with N normal in K. The quotient K/N is called a section of the group G.

Theorem 3.2. Let G be a finitely presented group with a golden configuration pair (g,E). Then G
admits a configuration pair (g,D), such that Cont(g,D) ∈ Cont(H) for a group H, if and only if G
is involved in H.

Proof. As a consequence of Lemma 2.2, note that for each refinement E ′ of E , the configura-
tion pair (g,E ′) is golden, too.

We will prove this theorem in two steps:

Step 1. We, first, show that there exists a refinement D of E , such that if Cont(g,D) =Cont(h,F ),
then the relation

W(J,ρ;g) 7→ W(J,ρ;h)M, for representative pairs (J,ρ) ing

will be a well-defined function on G, where M ∈ F is corresponding to {eG}. Suppose
that g= (g1, . . . , gn). Let {W(Ji,σi;g) : i = 1, . . . ,m} be a set of defining relators of G and

F := {(Ji,σi) : i = 1, . . . ,m}.

Assume that k := max{l(J) : (J,ρ) ∈ F} and set

S : = {(J,ρ) : l(J) ≤ 2k},

S0 : = {(J,ρ) : l(J) ≤ k}.

Now, consider a refinement D which contains singleton sets {W(J,ρ;g)}, (J,ρ) ∈ S. Let
(h,F ) be a configuration pair for a group H, such that Cont(g,E ′) = Cont(h,F ) and
consider M ∈ F to be a set that {eG}↭ M. By (3) and (4) in Lemma 2.1,

Mh = hM (h ∈ ⟨h⟩). (2)

Also, by induction on l(J), one can show that

W(J,ρ;h)M = M(J,ρ), (J,ρ) ∈ S0,

where M(J,ρ) is an element of F corresponding to {W(J,ρ;g)}. So, in particular, we
have

W(Ji,ρi;h)M = M, i = 1, . . . ,m.
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Let (J,ρ) and (I,δ), be two representative pair and take Wi = W(Ji,ρi;h), i = 1, . . . ,m. By
(2), Wi M = M, so, it can be seen that

W(J,ρ;h)W±
i W(I,δ;h)M = W(J ⊕ I,ρ ⊕ δ;h)M. (3)

This shows that the above function is well-defined; indeed, {W(Ji,σi;g) : i = 1, . . . ,m} is
the set of defining relators of G, this along with (3) implies W(J,ρ; h)M = M.

Step 2. Let D and M be as in Step 1. Put

K := {h ∈ ⟨h⟩ : hM = M}.

By the previous step and considering that (g,D) is golden, we have K is a normal sub-
group of ⟨h⟩. Also, for all representative pairs (J,ρ) in g, W(J,ρ;h)M ∩ M ̸= ∅ if and
only if W(J,ρ;g) = {eG} and the last one is equivalent to W(J,ρ;h) ∈ K. Therefore, the
map

G → ⟨h⟩/K, W(J,ρ;g) 7→ W(J,ρ;h)K

introduces an isomorphism between G and ⟨h⟩/K.

The other direction can be proved by Corollary 4.4 below.

Now let’s move on to the question of whether there is a group with a golden configuration
or not? The answer is ”yes, there is” and the class of groups with golden configuration pair
include polycyclic and FC-groups.

Consider a finite-range function ς on G. Assume that ς(G) = {ς1, . . . ,ςk} and set

E(ςi) := ς−1(ςi),

i = 1, . . . ,k. The partition E := {E(ςi) : i = 1, . . . ,k} of G is called the ς-partition of G. We
continue with the following definition (see [7, Definition 4.1]).

Definition 3. We say that a group G admits a golden system, if there exist a generating set g
of G, a set of representative pairs, {(Jg,ρg) : g ∈ G#} and a finite-range function ς on G with
following properties:

1. g = W(Jg,ρg;g), g ∈ G#,

2. E(ς(eG)) = {eG},

3. Let E be the ς-partition of G. If we have Cont(g,E) = Cont(h,F ), for a configuration
pair (h,F ) of a group H and we denote by F(ςi) the element in F corresponding to
E(ςi), i = 1, . . . ,k, then

W(Jg,σg;h)F(ς(eG)) ⊆ F(ς(g)).

We call the triple (g,ς,{(Jg,ρg)}g) the golden system and (Jg,ρg) the golden representative pair of
g.
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The importance of this definition will appear in the following obvious proposition:

Proposition 3.3. Let G be a group which admits a golden system (g,ς,{(Jg,ρg)}g). If E is the
ς-partition of G, then (g,E) will be a golden configuration pair.

Following the material in the fourth section of [7], we see that a polycyclic or an FC-group
admits a golden configuration system. This fact, together with Theorem 3.2, leads us to the
following theorem:

Theorem 3.4. Let G be a a polycyclic or an FC-group. Then G admits a configuration pair (g,E)
such that Cont(g,E) ∈ Cont H for a group H if and only if G is involved in H.

Another feature that can be characterized with only one configuration set is the infinitness
of a non-locally finite group.

Theorem 3.5. Every infinite non-locally finite group has a configuration set which is not a configu-
ration set of any finite group.

Some preparations are needed to prove this theorem. Let’s start with the following defi-
nition (see [11, Definition 0.1.6]).

Definition 4. Let G be a group. Two subsets A, B of G are said to be equidecomposable if
there are A1, . . . , An ⊂ A, B1, . . . , Bn ⊂ B and g1, . . . , gn ∈ G such that

(i) A =
⋃n

j=1 Aj and B =
⋃n

j=1 Bj;

(ii) Aj ∩ Ak = ∅ = Bj ∩ Bk for j,k ∈ {1, . . . ,n}, j ̸= k;

(iii) gj Aj = Bj, for j = 1, . . . ,n.

It is obvious from the above definition that no finite group can have equidecomposable
subsets A and B such that B ⊊ A.

We continue with some notions from graph theory: A (undirected) graph is an ordered
pair G = (V, E), comprising a set V of vertices together with a set E of edges (i.e. an edge
is associated with two vertices and the association takes the form of the unordered pair
of the vertices). A graph G = (V, E) is called infinite if V is an infinite set. If e ∈ E is as-
sociated with two vertices v,w ∈ V, we say that e joins v and w or that v and w are the
endpoints of e. A path in a graph G = (V, E) is alternating sequence of vertices and edges
v0, e0,v1, e1,v2, e2, . . . ,vk−1, ek−1,vk in which ej is the edge with endpoints vj,vj+1, j = 1, . . . ,k.
We say that v0 and vk are joined by the path. A ray in an infinite graph G = (V, E) is alternat-
ing sequence of vertices and edges v0, e0,v1, e1,v2, e2, . . . which contains no repeated vertices
and for n ∈ N ∪ {0}, en is the edge with endpoints vn,vn+1. A graph is connected when there
is a path between every pair of vertices. A graph is locally finite if each vertex is endpoint of
a finite number edges.

Lemma 3.6 (Konig’s lemma). Let G be a connected, locally finite, infinite graph. Then G contains a
ray.
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Appealing to Konig’s lemma, we can obtain equidecomposable subsets in an infinite
finitely generated group.

Theorem 3.7. Let G be an infinite finitely generated group.Then there are equidecomposable subsets
B, A such that B ⊊ A.

Proof. Let g = (g1, . . . , gn) be an ordered and symmetric set of generators for G (i.e. g−1
k ∈ g

for k = 1, . . . ,n). Then there is a Cayley graph, denoted by Γ = Γ(G,g), with vertices being
the elements of G and the edges being {x,y}, for x,y ∈ G, if x = gjy for some j = 1, . . . ,n. The
graph Γ is obviously, connected, locally finite and infinite, so by König’s lemma it contains a
ray. That means there exists an infinite subset A := {x0, x1, x2, . . .} of G such that xj+1x−1

j ∈ g

for all j ∈ N ∪ {0}. Put B = A \ {x0} and

Ak :=
{

xj ∈ A : xj+1x−1
j = gk

}
, (k = 1, . . . ,n).

Then Ak and Bk := gk Ak, k = 1, . . . ,n, fulfills the conditions of Definition 4, so B ⊊ A and A, B
are equidecomposable.

Remark 1. The statement of Theorem 3.7 is proposed by the author in [1]. The proof given
above is also the answer to the mentioned question.

We are now in a position to prove Theorem 3.5.

Proof of Theorem 3.5. By Theorem 3.7, there are equidecomposable subsets B⊊ A. Let
{

Aj
}n

j=1,{
Bj
}n

j=1 and
{

gj
}n

j=1 be as in Definition 4. Let g be the ordered set (g1, . . . , gn) and A be an
algebra on G generated by

Aj, Bj, j = 1, . . . ,n.

Assume that Con(g,A) ∈ Con H for a group H. Hence there are a configuration set Con(h,B)
of H such that Con(g,A) = Con(h,B). Let Cj and Dj be elements of B such that Cj ↭ Aj and
Dj ↭ Bj, j = 1, . . . ,n, so Cj ∩ Ck = ∅ = Bj ∩ Bk, j,k ∈ {1, . . . ,n}. By Lemma 2.1, Dj = hjCj, for
some hj ∈ h. Put C :=

⋃
j Cj and D =

⋃
j Dj, so D ⊊ C and C, D are equidecomposable subsets

of H, whence H is infinite.

Remark 2. The result of Theorem 3.5 does not hold when the group G is locally finite. In the
other words, if G is an infinite locally finite group, then for all configuration pair (g,E) of
G, there exists a finite group F such that Con(g,E) ∈ Con(F); for all C ∈ Con(g,E), select an
element in x0(C), say xC. Let F be a finite group generated by elements

xC, gxC and g (g ∈ g,C ∈ Con(g,E)).

Then for F = {F ∩ E : E ∈ E} we have Con(g,E) = Con(g,F ) and Con(g,F ) ∈ Con(F).

There are some other group properties which can be characterized by one configuration
set; for example, being non-Abelian and in a more general way not satisfying in a group law
( [8, Proposition 2.1]) or, having non-zero kth derived subgroup ( [8, Proposition 2.2]) are such
properties.
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4 Configuration sets and Tarski numbers

In this section, we study the relation between the configuration sets of a group and the
ones of its subgroups and quotients. By following the proof of [2, Lemma 4.1.] we obtain:

Lemma 4.1. Let ϕ : G → H be an epimorphism of groups. Then for all ordered sets g of G and
all disjoint collection F of H, we have Con(g,ϕ−1(F )) = Con(ϕ(g),F ). In particular Con(G)

contains all the configuration sets of quotients of G.

In the next two statement, we consider a subgroup H of a group G. Also, let T be a right
transversal of H in G, that is, a subset of G which contains precisely one element from each
right coset of H.

Proposition 4.2. Let A and B be subsets of H and S ⊂ T. Then AS ∩ BS = (A ∩ B)S. In particular,
AS and BS are disjoint if A and B are so.

Proof. Let a ∈ A, b ∈ B and x,y ∈ S be such that ax = by. Then Hx = Hy and so x = y, whence
a = b.

Lemma 4.3. Let F be a disjoint collection of H. Then FT := {FT : F ∈ F} is a disjoint collection
of G and Con(h,F ) = Con(h,FT). In particular Con(G) contains all the configuration sets of
subgroups of G

As a corollary of Lemmas 4.1 and 4.3, we get:

Corollary 4.4. Let G be a group. Then Con(G) contains all the configuration sets of its sections.

We now turn to the paradoxical decompositions and the Tarski numbers; a group G ad-
mits a (m + n)-paradoxical decomposition if there exist positive integers m and n, a partition
{P1, . . . , Pm, Q1, . . . , Qn} of G and elements x= (x1, . . . , xm), y= (y1, . . . ,yn) of G such that

G =
m⋃

i=1

xiPi =
n⋃

j=1

yjQi.

We can assume without loss of generality that xm = yn = 1 and we assume so, from now on.
Now, let A be an algebra generated by

Pi, xiPi, Qj, yjQj (i = 1, . . . ,m, j = 1, . . . ,n),

and put g = x⊕ y = (x1, . . . , xm−1,y1, . . . ,yn−1). We may call Con(g,A) a (m + n)-paradoxical
configuration.

The minimal possible value of m + n in a paradoxical decomposition of G is the Tarski
number of G and denoted by τ(G). If a group G doesn’t have a paradoxical decomposition, it
means that G is amenable; In this case we will define τ(G) to be ∞.

Proposition 4.5. Con(G) contains a (m + n)-paradoxical configuration if and only if G admits a
(m + n)-paradoxical decomposition.
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Proof. Only one direction needs to be proved. Assume that Con(G) contains a (m + n)-
paradoxical configuration Con(g,A), as described above. Then, there exists an ordered set
h= u⊕ v= (u1, . . . ,um−1,v1, . . . ,vn−1) and an algebra B of G, such that

Con(g,A) = Con(h,B).

Suppose that Ci, Dj in B are such that Ci ↭ Pi and Dj ↭ Qj, i = 1, . . . ,m, j = 1, . . . ,m. There-
fore, Lemma 2.1 leads to uiCi ↭ xiPi and vjDj ↭ yjQj. So, if E =

⋃
B∈B B, then

{C1, . . . ,Cm−1,Cm ∪ (G \ E), D1, . . . , Dn},

along with h form a (m + n)-paradoxical decomposition.

Now, using Lemmas 4.1 and 4.3 together with Proposition 4.5, another proof is obtained
for the following theorem which is proved in [12].

Theorem 4.6. The Tarski number of a group is less than the Tarski numbers of its subgroups and
quotients.
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